首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究倾斜织构表面的摩擦学性能,建立单微孔倾斜织构的二维计算模型并且考虑空化效应的影响。利用CFD方法模拟不同倾斜角、油膜厚度和织构深度条件下空化面积、织构表面压力分布和油膜承载力的变化情况。结果表明:与平行织构表面不同,在倾斜织构表面中,与不考虑空化相比,考虑空化效应时油膜承载力不一定更大,在倾斜角一定时,与油膜厚度有关;织构深度会影响承载性能,每个计算模型都会存在一个最优织构深度使得承载力最大,且最优承载力会随倾斜角的增大而增大,随油膜厚度的增大而减小;最优承载力增长率的变化趋势与空化效应有很大关系,空化效应较强时,最优承载力增长率会随着倾斜角的增大而减小,空化效应较弱时,最优承载力增长率会随着倾斜角的增大而增大。  相似文献   

2.
基于N-S流体计算方程,利用CFD软件建立表面微织构滑动轴承三维有限元模型,在计入和未计入空化效应条件下对比分析微织构分布特征对滑动轴承静特性的影响规律。研究表明:计入空化效应时滑动轴承的油膜最大压力和承载力大于未计入空化效应时油膜的最大压力和承载力;表面微织构的合理分布能有效提高润滑油膜的承载力,降低摩擦因数,分布在收敛间隙出口位置的微织构效果最为明显;在未计入空化效应时表面微织构作用效果更加明显,计入空化效应时微织构能抑制空穴区域的产生。  相似文献   

3.
张文涛  刘杨  王东升 《机械传动》2021,45(11):147-152
为研究瓦面环形槽对推力滑动轴承承载性能改善的优势,基于计算流体动力学(CFD)理论,建立了环形槽斜平面推力滑动轴承油膜分析模型,通过数值模拟,得到环形槽的平面区域占长比、深度和宽度对环形槽斜平面推力滑动轴承承载性能的影响规律.结果表明,推力轴承的承载力和油膜压力峰值随环形槽在平面区域的占长比的增加呈现先增大后减小的变化规律,并且随着环形槽占长比的增加,轴承温度逐渐下降;环形槽宽度一定时,深度的增加使得推力滑动轴承油膜压力分布明显改变,承载力呈现先增大后减小的变化规律;环形槽深度一定时,轴承承载力随着环形槽宽度的增加而增加;在斜平面推力滑动轴承瓦面增加特定环形槽结构,有利于提升承载性能.  相似文献   

4.
提出一种求解表面织构动压轴承油膜力的解析模型。基于Sommerfeld油膜边界,通过分离变量的方法,求解表面织构动压滑动轴承二阶偏微分Reynolds方程,得到表面织构动压滑动轴承油膜压力解析式。以圆形凹坑轴承为例,在油膜区域通过积分求得织构轴承的油膜力,分析织构参数对油膜压力的影响,研究发现,表面织构位于收敛区域(升压区)的轴承,其润滑与承载性能优于表面织构位于发散区域(降压区)的轴承、全织构轴承以及光滑轴承。对比了提出的解析模型与FDM和CFD模型在不同长径比和偏心率下的计算结果,结果表明,提出的解析模型能准确地描述表面织构动压滑动轴承的油膜力,且计算结果同FDM和CFD模型计算结果基本一致,验证了该模型的正确性。  相似文献   

5.
基于雷诺方程建立表面织构化滑动轴承润滑理论模型,探究不同织构参数(分布角度、深度、面积比、偏斜角度、长度)对钻头滑动轴承承载力和摩擦因数的影响规律.在油膜收敛和最小油膜厚度附近区域布置织构,有利于增加轴承表面润滑性能,而织构布置在油膜发散处反而会减小轴承承载力,增大摩擦因数.织构的最佳织构深度与轴承的工况相关,不同偏心率条件下最优织构深度不同,轴承所承载的载荷越大,凹槽型织构化轴承的最佳织构深度越深;摩擦因数随织构面积比的增加先增大后减小,当面积比为18%时,摩擦因数最小.织构深度对织构偏斜角度的影响较小,轴承摩擦因数随偏斜角度的增加逐渐减小;织构长度为轴承宽度的1/2时,轴承润滑效果最佳.  相似文献   

6.
以动压滑动轴承为研究对象,根据流体动压润滑原理,建立圆形微凹坑织构化动压滑动轴承油膜数学模型,推导织构化滑动轴承油膜厚度修正公式;结合Reynolds方程有限差分法的求解方法,分析全织构和织构化参数(间距、深度)对动压滑动轴承圆周方向压力分布的影响。结果表明:分布在轴承上的全织构会引起油膜压力的变化;织构位于不同的位置时对圆形微凹坑织构滑动轴承的油膜压力的影响是不同的,对于不同间距和深度的织构,当织构位于升压区时,动压滑动轴承具有较好的润滑、承载性能,而织构位于降压区和全织构时不利于轴承承载。  相似文献   

7.
利用p-θ质量守恒算法研究表面织构对径向滑动轴承静态特性的影响,建立椭球形织构模型,分别讨论特殊椭球形织构半径、数目、深度和分布位置等对滑动轴承承载力、摩擦力和摩擦因数的影响。结果表明:与光滑表面轴承相比,在轴瓦表面合理分布部分织构能提升轴承润滑性能,使轴承承载力增大、摩擦力和摩擦因数减小;全织构对轴承润滑性能有消极影响,使轴承承载力和摩擦力减小,摩擦因数增大。织构半径、数目、深度等参数对滑动轴承润滑性能都有重要影响;织构周向分布在180°~360°比分布在0°~180°更有益于提升轴承性能;在较高偏心率下,织构对轴承润滑性能的提升不明显。  相似文献   

8.
本文研究了可倾瓦径向滑动轴承流体润滑性能。推导了可倾瓦径向滑动轴承油膜厚度,得到可倾瓦径向滑动轴承的Reynolds方程,应用Matlab软件计算得到了油膜压力分布、油膜厚度分布,油膜承载力。计算结果表明:轴瓦的油膜压力3D分布呈现抛物面形分布,且下瓦油膜压力最大,油膜厚度最小,当偏心率较小时,承载力缓慢增大,当偏心率较大时,承载力急剧上升。该结论为轴承的设计与选用提供理论依据。  相似文献   

9.
不对中径向滑动轴承微凹槽织构数值分析   总被引:2,自引:0,他引:2  
为研究凹槽位置、深度、倾斜角和面积率等因素对不对中径向滑动轴承摩擦学性能的影响,基于Reynolds方程建立滑动轴承的摩擦润滑数学模型,采用有限差分法迭代求解不同凹槽微织构参数影响下的油膜压力,计算不同织构参数下轴承的承载力、摩擦力和端泄流量等。计算结果表明:凹槽微织构分布在升压区且轴向占比约50%时轴承承载力较高;相比于光滑轴承,微织构轴承的摩擦力更低,且凹槽的轴向占比和深度越大摩擦力越小;微织构对轴承的承载力具有削弱和增强的双重可能,存在最优的凹槽周向和轴向占比、深度和倾斜角使得轴承在较小摩擦力下具有更高的承载力;凹槽微织构的面积率与轴承承载力和摩擦力呈线性相关;轴承的不对中程度越小时,在光滑轴瓦表面加工合适参数的微织构时越有利于提高轴承的摩擦学性能。  相似文献   

10.
以有限宽径向滑动轴承为研究对象,将轴承承载力最大化和摩擦因数最小化作为优化目标,在轴承表面轴向方向分别设计加工矩形和斜向抛物线凹槽织构,以最大程度地提高轴承的承载力,减小摩擦因数。将凹槽几何参数(凹槽数目N、凹槽相对深度H_d、偏斜角度α、织构率T)作为变量,求解不同变量下的Reynolds方程得到油膜承载力。数值结果表明,具有凹槽织构的轴承承载力大于未织构轴承,摩擦因数小于未织构轴承;随着凹槽相对深度Hd、织构率T的增加,轴承承载力增加,摩擦因数减小;抛物线凹槽织构率T在40%~50%时,承载力取得最优值。  相似文献   

11.
推力滑动轴承表面织构的优化设计   总被引:10,自引:0,他引:10  
在推力滑动轴承表面设计轴对称分布的扇形直槽织构,以提高轴承的流体动压润滑性能。为对扇形直槽的参数(直槽的数目、深度和面积比)进行优化设计,将轴承的内外径、转速、润滑油黏度、轴承间隙以及直槽参数作为变量,求解不同变量值下的Reynolds方程,得到油膜承载力,运用最小二乘法对承载力的离散数据进行拟合,得到承载力的拟合函数,并推导出摩擦因数的表达式。针对"轴承间隙已知,要求承载力最大或者摩擦因数最小,以及承载力已知,要求轴承间隙最大或者摩擦因数最小"这四种约束条件及优化目标,利用承载力和摩擦因数的拟合公式,得到对应的直槽参数的最优值。通过数值试验,将拟合公式计算的承载力、轴承间隙和摩擦因数与直接求解Reynolds方程得到的结果进行对比,验证了直槽参数优化结果的正确性。设计加工三种具有不同直槽数目和深度的扇形直槽织构并进行摩擦试验,通过对比摩擦因数的计算值和试验值后发现,承载力和摩擦因数的拟合公式在趋势上是正确的,直槽参数的优化结果是可信的。  相似文献   

12.
表面织构分布参数对流体动压润滑的影响及其数值优化   总被引:1,自引:0,他引:1  
为获得最优的表面织构分布参数,以球冠凹坑织构模型为研究对象,选择不等边的矩形计算控制单元,建立水平和垂直分布距离(密度)不等的表面织构分布模型。根据流体动压润滑原理,基于Navier-Stokes方程建立二维Reynolds方程,并通过多重网格方法进行求解,以平均油膜压力和油膜压力峰值作为动压润滑性能的评价指标,研究表面织构分布间距对油膜压力数值大小和油膜压力稳定性的影响,并研究表面织构分布间距对油膜压力的影响机制。结果表明:控制区域平均油膜压力随凹坑控制单元边长的增大先逐渐增大再缓慢减小,当织构单元边长为凹坑半径的3.4倍,长宽比为0.82时,可以获得最优的油膜承载力;适当增大边界凹坑的控制单元,使边界处凹坑左右侧间距都在凹坑半径的3.4倍左右时,可以有效地提升油膜压力稳定性;泵吸作用和影响区域占控制区域比率的变化导致表面织构分布间距对油膜压力产生了影响。  相似文献   

13.
为揭示热作用对复合织构滑动轴承润滑性能的影响规律,建立考虑润滑剂热作用影响的复合织构滑动轴承润滑性能求解模型,分析织构位置、转速及长径比对复合织构滑动轴承润滑性能的影响,并将其与单层织构轴承和无织构轴承进行对比。结果表明:1)无论是否考虑热作用,织构位置在轴承压力上升区时,复合织构轴承的承载力最大,摩擦系数最小;随转速的增加,轴承承载力与摩擦力增大,且复合织构轴承承载力最大,摩擦力最小;随长径比的增大,轴承承载力增大但摩擦系数减小,复合织构轴承承载力最大,摩擦系数最小。2)考虑热作用后,相同工况参数下,轴承承载力、摩擦力和摩擦系数相较于不考虑热作用的更低,但复合织构轴承的承载力总是高于单层织构轴承与无织构轴承,且摩擦力与摩擦系数最低。  相似文献   

14.
计入空穴效应,运用Fluent两相流模型分析三油槽滑动轴承湍流状态下的油膜特性,研究不同进油压力和润滑油黏度对油膜承载力和气穴的影响。研究表明:提高进油压力可以提高轴承的承载力、减少空穴区域的面积和高比例的气穴,从而防止完全空化的发生;润滑油黏度的增大虽然增加了轴承的承载力,但也加剧了油膜发散区域的空穴现象,并且增加了高比例的气穴比例,在实际应用中应合理地选择润滑油的黏度。  相似文献   

15.
为进一步提高滑动轴承的承载力以满足大功率滑动轴承的设计要求,在织构型滑动轴承上增加浅沟槽,提出沟槽-织构复合型滑动轴承结构;建立沟槽-织构复合型滑动轴承性能数值分析模型,通过CFD数值仿真研究沟槽结构参数对织构型滑动轴承承载能力和摩擦特性的影响。结果表明:采用沟槽-织构复合形式可进一步提升轴承的承载力及综合性能;在织构参数一定的情况下,沟槽尺寸和分布形式对轴承性能有很大影响,当沟槽布置在织构上游区、沟槽轴向边长大于周向边长时有利于提高轴承的综合性能;在一定的使用条件下,合理设计沟槽深度、沟槽长宽比及周向布置区域大小,不仅能够有效提高轴承的承载力,而且能够减小轴承的摩擦力和端泄量,进一步改善滑动轴承的性能。  相似文献   

16.
为研究不同的滑移情况对圆柱形凹坑织构滑动轴承摩擦力的影响,建立含有圆柱形凹坑织构的滑动轴承在不同界面滑移状态下的摩擦力计算模型,探究影响织构化滑动轴承摩擦力的参数,并借助ANSYS分析不同滑移情况下界面滑移对圆柱形凹坑织构滑动轴承摩擦力的影响规律。结果表明:织构化滑动轴承的摩擦力主要是由轴颈线速度、油膜滑移比、轴承的进出油口压力、织构处油膜压力、织构深度、油膜厚度和承载力决定;不同滑移情况下织构模型的摩擦力均小于无织构模型;且在上下表面均滑移时,圆柱形凹坑织构在出口位置时表现出最优的承载和减摩效果;适当地增加圆柱形凹坑织构的深度可以改善模型的摩擦性能,但是过深的凹坑织构并不能发挥出其性能。  相似文献   

17.
随着机械设备日益重载化、高速化,给滑动轴承承载性能提出更高要求。通过使用FLUENT软件,构建轴承油膜润滑模型,并选定适合的参数进行计算,主要探究油膜厚度、油槽位置以及瓦块倾角不同时滑动轴承承载力的变化情况,找出内在规律。研究结果显示,油膜越小,轴承承载力越大;膜厚固定时,随着轴瓦倾角的增大,轴承承载力会先增大后减小;油槽位置外移程度越大,则轴承承载力提升越明显。  相似文献   

18.
浮环轴承内螺纹织构深度会改变织构区域油膜厚度,导致浮环轴承油膜动态特性变化,从而影响涡轮增压器转子-轴承系统运行稳定性以及工作寿命。基于流体润滑理论,推导含表面织构的浮环轴承油膜控制方程,揭示内螺纹织构深度与浮环轴承油膜特性之间的关系。以某型涡轮增压器浮环轴承为例,分析内螺纹织构深度对轴承油膜最大压力、油膜承载力、刚度、阻尼等的影响。建立浮环轴承双油膜润滑分析流体动力学模型,利用CFD方法对油膜动态特性进行分析,研究织构深度从6 μm增至12 μm时的油膜特性。结果表明:在轴颈转速1×103~2.1×105 r/min范围内,随着织构深度的增加,油膜最大压力、内外油膜承载力、刚度阻尼系数呈现先增大后减小的趋势;在转速超过1×105 r/min后,织构对油膜动态特性系数提升更明显;与无织构轴承相比,织构深度为8 μm时,油膜承载力、刚度阻尼等动态特性提升最大。研究表明,在合适的织构深度下,织构可以改善油膜特性,提升轴承的运转稳定性,延长工作寿命。  相似文献   

19.
在径向滑动轴承表面设计轴对称分布的矩形凹槽织构,基于雷诺方程建立其有限长径向滑动轴承动压润滑模型,研究织构参数对滑动轴承承载能力和摩擦阻力系数的影响。结果表明:带矩形凹槽的全织构轴承相对光滑轴承具有更好的承载性能,但织构对摩擦阻力系数的降低影响微弱;随织构宽度的增大,承载力增加,但相应的摩擦阻力也会随之增大,存在最优织构宽度使轴承在较小的摩擦力下,获得更大的承载力。矩形凹槽的参数对轴承润滑性能具有重要的影响,合理选用参数可以明显改善轴承润滑性能。  相似文献   

20.
以用于补偿高速高压圆弧齿轮泵不平衡径向力的滑动轴承为研究对象,在对其进行理论建模和分析的基础上,利用计算流体动力学软件Fluent分析相同工况下不同初始油膜厚度、进油口直径、进油口角度、轴向封油边宽度、油腔深度等结构参数对滑动轴承油膜特性的影响,并在此基础上对轴承结构参数进行了优化,最后通过实验进行验证。研究结果表明:初始油膜厚度和进油口角度对轴承温升影响显著,初始油膜厚度或进油口角度的增加使滑动轴承温升明显减小;轴向封油边的增加使轴承承载面增大,轴承承载力和温升也随之增大;进油口直径取1.7 mm和静压槽深度取1 mm时,使轴承温升达到最低;在负载压力15 MPa、转速6000 r/min工况下,与安装未优化滑动轴承的齿轮泵相比,安装优化后滑动轴承的齿轮泵温度降低5℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号