首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low temperature dehydration. Kinesin-1 is present in all major lineages, but it is rarely detected in seed desiccation tolerance of woody species. These observations provide new insight into the proteome of seeds in deep dormancy under different desiccation conditions.  相似文献   

2.
Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.  相似文献   

3.
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.  相似文献   

4.
Phospholipids are essential components of the oil bodies present in seeds, and they are also the main components of the commercial seed lecithins used in many food formulas. In the present study, we analyzed the characteristics of the polar lipid fraction of seeds from different sunflower FA mutants. In sunflower seeds the accumulation of polar lipids reaches a maximum 25 d after anthesis before diminishing during the final stages of maturation and desiccation. We have developed an HPLC method, using ELSD, that produces optimal separation of all polar seed lipids. This method improves the results that could be obtained with previous HPLC methods and hence, we have used it to analyze the polar lipid fraction of sunflower seeds. We show that this fraction comprises phospholipids and glycolipids, of which PC is the most abundant species. Moreover, we found that the relative polar lipid content in control and mutant seeds is similar, suggesting that the mutant traits do not affect polar lipid synthesis. The degradation of polar lipids in isolated seeds was also examined and we found that the PC and PE present in developing sunflower seed kernels were rapidly degraded owing to the activity of D-type phospholipases.  相似文献   

5.
6.
7.
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.  相似文献   

8.
9.
10.
Influence of Chloroplasts on the Formation of Unsaturated Fatty Acids in Maturing Rapeseeds In general, seeds that store fats, contain only C18-fatty acids which are desaturated upto linoleic step. Exceptions to this general pattern are the seeds of cruciferae, legumenae and linaceae. Embryos of these seeds develop, especially during the initial stages of maturation, photosynthetically active chloroplasts with a high content of linolenic acid. Therefore, for the breeding of rapeseed plants (cruciferae) having low linolenic acid content in the seed oil, one has to select either such seeds in which very little chloroplasts are formed during maturation, or seeds in which chloroplasts are reduced at an early stage.  相似文献   

11.
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.  相似文献   

12.
Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation.  相似文献   

13.
Salinized soil is a major environmental stress affecting plant growth and development. Excessive salt in the soil inhibits the growth of most plants and even threatens their survival. Halophytes are plants that can grow and develop normally on saline-alkali soil due to salt tolerance mechanisms that emerged during evolution. For this reason, halophytes are used as pioneer plants for improving and utilizing saline land. Tamarisk, a family of woody halophytes, is highly salt tolerant and has high economic value. Understanding the mechanisms of salt tolerance in tamarisk and identifying the key genes involved are important for improving saline land and increasing the salt tolerance of crops. Here, we review recent advances in our understanding of the salt tolerance mechanisms of tamarisk and the economic and medicinal value of this halophyte.  相似文献   

14.
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.  相似文献   

15.
The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed—substantially higher in sycamore—hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•−) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•− and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS–MetO–Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.  相似文献   

16.
The effect of intercepted solar radiation during fruit filling on seed weight and oil content from seeds of three sectors of the head in two sunflower (Helianthus annuus L.) hybrids of low and high potential oil percentage was investigated. Seed weight in each sector depended on both the level of radiation intercepted (modified by shading and thinning plants) and the genotype grown. A higher level of intercepted solar radiation increased seed weight in each sector. Central seeds of shaded plants showed the lowest weight. The seed and kernel oil content hierarchy among the three sectors was modified only in the hybrid with high potential oil content. For each head sector, variations in seed oil content associated with changes in the level of intercepted radiation could be accounted for by changes in the kernel oil content, not in the kernel/seed ratio. Significant relationships were found between seed oil and kernel oil contents when analyses between treatments (R>0.86) and sectors (R>0.92) were carried out. These relationships together with the growing conditions of plants during seed filling, the genotype, and the seed position on the head are essential factors that should be taken into account when selecting seeds in sunflower breeding programs since they affect the commercial/industrial quality of seeds.  相似文献   

17.
The main effects of three different irrigation regimes, i.e., sustained deficit irrigation (SDI), regulated deficit irrigation (RDI) and non-irrigated (NI), on seed traits namely proanthocyanidins (PAs) were evaluated in the wine grape cultivar Aragonez (syn. Tempranillo) grown in Alentejo (Portugal) over two growing seasons. Results showed that while the number of seeds per berry was not affected by water availability, seed fresh weight differed among treatments, the NI treatment exhibiting the lowest values. The biosynthetic pathway of flavanols appeared to be modified by the irrigation treatment, and several genes responsible for PA synthesis were up-regulated in the most stressed seeds (RDI and NI). However, this effect had no impact on PA content, suggesting the influence of other factors such as oxidation and/or degradation of PAs at late stages of maturation in grape seeds. The seeds’ non-enzymatic antioxidant capacities (oxygen radical absorbance capacity (ORAC) and hydroxyl radical adverting capacity (HORAC)) were modulated by water deficit and correlated well with PA content. The impact of irrigation strategy on PA biosynthesis, content, and anti-radical activity during seed ripening is discussed in the context of increasing interest in the role of PAs in the color and taste of wine, and the potential health benefits relating to their antioxidant capacity.  相似文献   

18.
19.
20.
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号