首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoparticle network hydrogels (NNHs) in which nanoparticles are used as a key building block to build the gel network have attracted significant interest given their potential to leverage the favorable properties of both hydrogels (e.g., hydrophilicity, tunable pore sizes, mechanics, etc.) and a variety of different nanoparticles (e.g., high surface area, chemical activity, independently tunable porosity, mechanics) to create new functional materials. Herein, recent progress in the design and use of NNHs is comprehensively reviewed, with an emphasis on defining the typical gel morphologies/architectures that can be achieved with NNHs, the typical crosslinking approaches used to fabricate NNHs, the fundamental properties and functional benefits of NNHs, and the reported applications of NNHs in electronics (flexible electronics, sensors), environmental (sorbents, separations), agriculture, self-cleaning-materials, and biomedical (drug delivery, tissue engineering) applications. In particular, the way in which the NNH structure is applied to improve the performance of the hydrogel in each application is emphasized, with the aim to develop a set of principles that can be used to rationally design NNHs for future uses.  相似文献   

2.
Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease-associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 h; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier.  相似文献   

3.
Capacitive-type strain sensors based on hydrogel ionic conductors have undergone rapid development benefited from their robust structure, drift-free sensing, higher sensitivity, and precision. However, the unsatisfactory electro-mechanical stability of the conventional hydrogel conductors, which are normally vulnerable to large deformation and severe mechanical impacts, remains a challenge. In addition, there is not enough research regarding the adhesiveness and mechanical properties of the dielectric layer, which is also critical for the mechanical adaptability of the whole device. Here, a dynamically super-tough capacitive-type strain sensor based on energy-dissipative dual-crosslinked hydrogel conductors and an organogel dielectric with high adhesive strength is developed. Combining with the mechanical advantages of the hydro/organo-gels, the capacitive strain sensor exhibits high stretchability and superior linear dependence of sensitivity with a gauge factor of ≈0.8% at 100% strain. Moreover, the sensor displayed ultrastability against various severe mechanical stimuli that can even survive unprecedentedly from extremely catastrophic car run-over by 20 times. With these synergistic mechanical advantages, the capacitive strain sensor is successfully applied as a highly-reliable wearable sensing system to monitor diverse faint physiological signals and large-range human motions.  相似文献   

4.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   

5.
Hydrogels, as 3D networks containing huge amount of water, display similarity to soft tissues, and thus they are of wide interest in tissue engineering. Hydrogels, due to biocompatibility and porous structure, are valuable therapeutic platforms for hydrophilic drugs. Over the last decade, there has been a strong emphasis on the development of hydrogel platforms with the ability to increase the solubility of hydrophobic drugs. However, the pronounced discrepancy between the hydrophilic character of hydrogels and the hydrophobic nature of numerous pharmacologically active compounds is problematic. In recent years, different strategies are applied using special polymer constructs or composite materials exploiting the advanced scientific knowledge in the area of polymer and lipid-based nano- and microcarriers hydrophobization of the hydrogel turns out to be not only valuable in terms of achieving the ability to dissolve poorly soluble drugs in water, but also proves to be crucial in obtaining bioadhesion in wet conditions, but also, unexpected abnormal water swelling behavior, as well as in mechanical properties such as the dissipation mechanism and self-healable hydrogel properties. This review is mainly focused on recent advances in the usage of hydrophobized hydrogels in biomedical applications.  相似文献   

6.
Marine organisms provide novel and broad sources for the preparations and applications of biomaterials. Since the urgent requirement of bio-hydrogels to mimic tissue extracellular matrix (ECM), the natural biomacromolecule hydrogels derived from marine sources have received increasing attention. Benefiting from their outstanding bioactivity and biocompatibility, many attempts have been made to reconstruct ECM components by applying marine-derived natural hydrogels. Moreover, marine hydrogels have been successfully applied in biomedicine by means of microfluidics, electrospray, and bioprinting. In this review, the classification and characteristics of marine-derived hydrogels are summarized. In particular, their role in the development of biomaterials is also introduced. Then, the recent advances in bio-fabrication strategies for various hydrogel materials are focused upon. Besides, the influences of hydrogel types on their functions in biomedical applications are discussed in depth. Finally, critical reflections on the limitations and future development of marine-derived hydrogels are presented.  相似文献   

7.
8.
There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin‐mountable, and wearable strain sensors are needed for several potential applications including personalized health‐monitoring, human motion detection, human‐machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin‐mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.  相似文献   

9.
Harvesting low-grade waste heat from the natural environment with thermoelectric materials is considered as a promising solution for the sustainable energy supply for wearable electronic devices. For practical applications, it is desirable to endow the thermoelectric materials with excellent mechanical and self-healing properties, which remains a great challenge. Herein, the design and characterization of a series of high-performance ionic hydrogels for soft thermoelectric generator applications are reported. Composed of a physically cross-linked network of polyacrylic acid (PAA) and polyethylene glycol (PEO) doped with sodium chloride, the resulting PAA-PEO-NaCl ionic hydrogels demonstrates impressive mechanical strength (breaking stress >1.3 MPa), stretchability (>1100%), and toughness (up to 7.34 MJ m−3). Moreover, the reversible hydrogen bonding interaction and chain entanglement render the ionic hydrogels with excellent mechanical resilience, adhesion properties, and self-healing properties. At ambient conditions, the electrochemical and thermoelectric performance of the ionic hydrogels can be restored immediately from physical damage such as cutting, and the mechanical healing can be completely restored within 24 h. At the optimized composition, the Seebeck coefficient of the ionic hydrogels can reach 3.26 mV K−1 with a low thermal conductivity of 0.321 W m−1 K−1. Considering the excellent mechanical properties and thermoelectric performance, it is believed that the ionic hydrogels are widely applicable in ionic thermoelectric capacitors to convert low-grade heat into electricity for soft electronic devices.  相似文献   

10.
A simple preparation of thermoreversible gelatin‐based ferrogels in water provides a constant structure defined by the crosslinking degree for gelatin contents between 6 and 18 wt%. The possibility of varying magnetite nanoparticle concentration between 20 and 70 wt% is also reported. Simulation studies hint at the suitability of collagen to bind iron and hydroxide ions, suggesting that collagen acts as a nucleation seed to iron hydroxide aggregation, and thus the intergrowth of collagen and magnetite nanoparticles already at the precursor stage. The detailed structure of the individual ferrogel components is characterized by small‐angle neutron scattering (SANS) using contrast matching. The magnetite structure characterization is supplemented by small‐angle X‐ray scattering and microscopy only visualizing magnetite. SANS shows an unchanged gelatin structure of average mesh size larger than the nanoparticles with respect to gel concentration while the magnetite nanoparticles size of around 10 nm seems to be limited by the gel mesh size. Swelling measurements underline that magnetite acts as additional crosslinker and therefore varying the magnetic and mechanical properties of the ferrogels. Overall, the simple and variable synthesis protocol, the cheap and easy accessibility of the components as well as the biocompatibility of the gelatin‐based materials suggest them for a number of applications including actuators.  相似文献   

11.
Hydrogels are promising materials in the applications of wound adhesives, wearable electronics, tissue engineering, implantable electronics, etc. The properties of a hydrogel rely strongly on its composition. However, the optimization of hydrogel properties has been a big challenge as increasing numbers of components are added to enhance and synergize its mechanical, biomedical, electrical, and self-healable properties. Here in this work, it is shown that high-throughput screening can efficiently and systematically explore the effects of multiple components (at least eight) on the properties of polysulfobetaine hydrogels, as well as provide a useful database for diverse applications. The optimized polysulfobetaine hydrogels that exhibit outstanding self-healing and mechanical properties, have been obtained by high-throughput screening. By compositing with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), intrinsically self-healable and stretchable conductors are achieved. It is further demonstrated that a polysulfobetaine hydrogel-based electronic skin, which exhibits exceptionally fast self-healing capability of the whole device at ambient conditions. This work successfully extends high-throughput synthetic methodology to the field of hydrogel electronics, as well as demonstrates new directions of healable flexible electronic devices in terms of material development and device design.  相似文献   

12.
13.
Hydrogels find widespread applications in biomedical engineering due to their hydrated environment and tunable properties (e.g., mechanical, chemical, biocompatible) similar to the native extracellular matrix (ECM). However, challenges still exist regarding utilizing hydrogels in applications such as engineering 3D tissue constructs and active targeting in drug delivery, due to the lack of controllability, actuation, and quick‐response properties. Recently, magnetic hydrogels have emerged as a novel biocomposite for their active response properties and extended applications. In this review, the state‐of‐the‐art methods for magnetic hydrogel preparation are presented and their advantages and drawbacks in applications are discussed. The applications of magnetic hydrogels in biomedical engineering are also reviewed, including tissue engineering, drug delivery and release, enzyme immobilization, cancer therapy, and soft actuators. Concluding remarks and perspectives for the future development of magnetic hydrogels are addressed.  相似文献   

14.
Stretchable conductive hydrogels with simultaneous high mechanical strength/modulus, and ultrahigh, stable electrical conductivity are ideal for applications in soft robots, artificial skin, and bioelectronics, but to date, they are still very challenging to fabricate. Herein, sandwich-structured hybrid hydrogels based on layers of aramid nanofibers (ANFs) reinforced polyvinyl alcohol (PVA) hydrogels and a layer of silver nanowires (AgNWs)/PVA are fabricated by electrospinning combined with vacuum-assisted filtration. The hybrid ANF-PVA hydrogels exhibit excellent mechanical properties with the tensile modulus of 10.7–15.4 MPa, tensile strength of 3.3–5.5 MPa, and fracture energy up to 5.7 kJ m−2, primarily attributed to the strong hydrogen bonding interactions between PVA and ANFs and in-plane alignment of the fibrous structure. Rational design of heterogeneous structure endows the hydrogels with ultrahigh apparent electrical conductivity of 1.66 × 104 S m−1, among the highest electrical conductivities ever reported so far for conductive hydrogels. More importantly, this ultrahigh conductivity remains constant upon a broad range of applied strains from 0–90% and over 500 stretching cycles. Furthermore, the hydrogels exhibit excellent Joule heating and electromagnetic interference shielding performances due to the ultrahigh electrical conductivity. These mechanically strong, hybrid hydrogels with ultrahigh and strain-invariant electrical conductivity represent great promises for many important applications such as flexible electronics.  相似文献   

15.
Double‐network hydrogels (DN gels), despite their high water content, are the strongest and toughest soft and wet materials available. However, in conventional DN gels, which show extraordinarily high mechanical performance comparable to that of industrial rubbers, the first network must be a strong polyelectrolyte and this requirement greatly hinders the widespread application of these gels. A general method involving the use of a “molecular stent” for the synthesis of tough DN gels using any hydrophilic polymer as the first network is reported. This is the first reported method for the synthesis of tough DN gels using various neutral or weak polyelectrolyte hydrogels as the first network. This method helps extend the DN gel concept to various functional polymers and may increase the number of applications of hydrogels in various fields.  相似文献   

16.
With the remarkable development of DNA nanotechnology, interest in DNA molecules has expanded beyond its biological role to building blocks in materials science. As a unique branch of DNA-based materials, DNA hydrogels have exhibited many fascinating characteristics, including broad biocompatibility, precise programmability, convenient modification, and tunable mechanical properties, which make DNA hydrogels ideal biomaterials. Moreover, by combining with functional nucleic acids, such as aptamers, i-motif nanostructures, CpG oligodeoxynucleotides, and DNAzymes, DNA hydrogels can be further tailored to provide additional target recognition, therapeutic potential, and catalytic activities, allowing them to play important roles in biosensing and medical applications. This review, aims to provide readers with an up-to-date overview of the important developments of biomedical DNA hydrogels. First, it introduces different synthetic strategies of hydrogels that utilize DNA as building materials and functional units within the hydrogel networks and discuss their advantages in biomedical applications. Subsequently, new approaches and applications of biomedical DNA hydrogels in the recent years are highlighted, such as therapeutic systems, cell culture platforms, tissue engineering materials, and biosensors. Finally, future perspectives and remaining challenges of DNA hydrogels in biomedicine are presented.  相似文献   

17.
A dendron‐substituted tetraphenylethene low molecular weight gelator (LMWG)compound, LMWG 1, is designed and investigated. Gelation‐induced fluorescence enhancement is observed for the gel based on LMWG 1 and its fluorescence can be reversibly tuned by varying the temperature of the ensemble. The photoinduced energy‐transfer can occur between LMWG 1 and PI 2 (perylene diimide) in the gel phase, but it cannot occur in the corresponding solution. The emission color of the gel of LMWG 1 and PI 2 can be tuned from cyan, yellow, to red by varying the concentration of PI 2 . By taking advantage of the photochromic transformation of spiropyran, the emission color of the organogels based on LMWG 1 and SP 3 can be switched by alternating UV and visible‐light irradiations. The emission color can also be tuned by varying the irradiation time. In this way, organogels based on LMWG 1 with multiemission color can be achieved in the presence of SP 3 after light irradiations.  相似文献   

18.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   

19.
Wearable and implantable bioelectronics are receiving a great deal of attention because they offer huge promise in personalized healthcare. Currently available bioelectronics generally rely on external aids to form an attachment to the human body, which leads to unstable performance in practical applications. Self‐adhesive bioelectronics are highly desirable for ameliorating these concerns by offering reliable and conformal contact with tissue, and stability and fidelity in the signal detection. However, achieving adequate and long‐term self‐adhesion to soft and wet biological tissues has been a daunting challenge. Recently, mussel‐inspired hydrogels have emerged as promising candidates for the design of self‐adhesive bioelectronics. In addition to self‐adhesiveness, the mussel‐inspired chemistry offers a unique pathway for integrating multiple functional properties to all‐in‐one bioelectronic devices, which have great implications for healthcare applications. In this report, the recent progress in the area of mussel‐inspired self‐adhesive bioelectronics is highlighted by specifically discussing: 1) adhesion mechanism of mussels, 2) mussel‐inspired hydrogels with long‐term and repeatable adhesion, 3) the recent advance in development of hydrogel bioelectronics by reconciling self‐adhesiveness and additional properties including conductivity, toughness, transparency, self‐healing, antibacterial properties, and tolerance to extreme environment, and 4) the challenges and prospects for the future design of the mussel‐inspired self‐adhesive bioelectronics.  相似文献   

20.
Natural biotissues like muscles, ligaments, and nerves have highly aligned structures, which play critical roles in directional signal transport, sensing, and actuation. Inspired by anisotropic biotissues, composite hydrogels with outstanding mechanical properties and conductivity are developed by compositing thermo-responsive poly (N-isopropylacrylamide) (PNIPAM) hydrogels with highly aligned carbon fibers (CFs). The anisotropic hydrogels show superior tensile strength (3.0 ± 0.3), modulus (74 ± 7.0 MPa), excellent electrical conductivity (≈670 S m−1), and ultra-high sensitivity (gauge factor up to 647) along CFs, with an anisotropic ratio (AR) up to 740 over those in perpendicular direction. The extremely high AR in conductivity (more than 400) produces high-level output in parallel direction and low-level output in perpendicular direction with a direct current (DC) power supply, which is used to fabricate AND and OR gates. Moreover, the composite hydrogels are converted into thermo-responsive actuators with CFs twisted before compositing with PNIPAM/clay network. The pre-twisted CF helices impart internal stress that drives reversible actuation of hydrogel helices upon thermo-stimulating. The actuation is self-sensed due to the extremely high sensitivity of the composite hydrogels. Such biomimetic anisotropic self-sensing hydrogel actuators resemble natural biotissues with both actuation and sensing capabilities, and have promise applications for artificial robotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号