首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
聚芳醚酮/含甲基侧基聚芳醚砜醚酮酮的合成与表征   总被引:2,自引:0,他引:2  
以2,2’-二甲基-4,4'-二苯氧基二苯砜(o-CH3-DPODPS)、二苯醚(DPE)和对苯二甲酰氯(TPC)为单体,在无水A1C13、1,2-二氯乙烷和N,N-二甲基甲酰胺存在下,通过低温溶液缩聚反应。合成了一系列新型含甲基侧基的聚芳醚酮/聚芳醚砜无规共聚物。用FT-IR,WAXD,DSC和TG等方法对聚合物进行了表征。结果表明,随着2,2'-二甲基-4,4'-二苯氧基二苯砜含量的增加,共聚物的玻璃化转变温度逐渐提高,熔融温度则逐渐下降。  相似文献   

2.
将新单体-4,4′-二(β-萘氧基)二苯砜(BNODPS)和对苯二甲酰氯、4,4′-二苯氧基二苯甲酮进行傅-克酰化聚合,制得了一系列主链含萘环的聚醚酮醚酮酮/聚醚砜醚酮酮(PEKEKK/PESEKK)共聚物。研究表明,PESEKK含量小于40mol%时,可制得结晶聚合物。共聚物具有比PEKEKK更优异的耐热性,随着主链中PESEKK含量增加,共聚物Tg逐渐升高,Tm、结晶度逐渐降低,仍具有很好的耐溶剂性。  相似文献   

3.
以新型聚合单体1-甲基-4,5-二(4-氯化苯甲酰基)环己烯与4-(3,5-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮、4,4′-二氯二苯砜单体经亲核取代反应,成功地合成了含环己烯结构的杂环联苯型聚醚砜酮聚合物,用FT-IR、^1H-NMR、DSC、X-射线衍射等方法对聚合物进行了表征,并研究了聚合物的溶解性能,结果表明,聚合物是一种具有较高的玻璃化温度的可溶性无规共聚物,聚合物含有不饱和双键结构,是一种反应性高分子。  相似文献   

4.
以新型聚合单体1-甲基-4,5-二(4-氯代苯甲酰基)环已烯与4-(3,5-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮、4,4’-二氯二苯砜单体经亲核取代反应,成功地合成了含环己烯结构的杂环联苯型聚醚砜酮聚合物。用FT-IR、1H-NMR、DSC、X-射线衍射等方法对聚合物进行了表征,并研究了聚合物的溶解性能。结果表明,聚合物是一种具有较高的玻璃化温度的可溶性无规共聚物。聚合物含有不饱和双键结构,是一种反应性高分子。  相似文献   

5.
以4,4’-二(2,6-二甲基苯氧基)三苯二酮(o-M2DPOTPK)、1,4-二苯氧基苯(DPB)为单体,以1,2-二氯乙烷(DCE)为溶剂,无水三氯化铝和N,N-二甲基甲酰胺(DMF)为复合催化溶剂体系,与对苯二甲酰氯(TPC)低温缩聚,合成了一系列高摩尔质量含双邻位甲基取代结构的聚芳醚酮酮醚酮酮(M-PEKKEKK)/聚芳醚醚酮酮(PEEKK)三元无规共聚物,并对聚合物进行了表征。  相似文献   

6.
以α-萘酚为原料,通过和4,4′-二氟二苯酮在N,N-二甲基乙酰胺(DMAC)及K2CO3中的缩合反应制备了一种含萘环的新型芳醚单体4,4′-二(α-萘氧基)二苯酮(DNBP),将其分别与2,5-二氯对苯二甲酰氯(DCTPC)。对苯二甲酰氯(TPC)等芳二酰氯通过在NMP/AlCl3/ClCH2CH2Cl复合溶剂/催化剂体系中的低温溶液进行亲电共缩聚反应,合成了一系列在分子主链芳环上引入侧基氯原子的同时,又在主链中引入刚性萘环结构的新型聚芳醚酮醚酮酮无规共聚物。  相似文献   

7.
吴英华  任凤莲 《应用化工》2007,36(9):863-864,873
乙基乙烯基酮与4,4-乙二氧撑-2-甲基环乙酮2 c的手性亚胺进行不对称Michael加成,生成2,2-双取代环烷酮5,5经过克莱森缩合得到(-)-6,6-乙二氧撑-1,10-二甲基-1(9)-八氢萘酮-2(-)(1 c)。  相似文献   

8.
研究了聚醚酮酮(PEKK)和磺化聚醚酮酮(SPEKK)的密度、吸水率、耐溶剂性能和电性能,用X—射线衍射研究了结晶度的大小,用差热分析、差示扫描量热分析和热失重法进行了热性能的研究,并对模压成型条件进行了探讨。与磺化聚醚酮酮相比,聚醚酮酮的密度略大,吸水率较小,耐溶剂性能好,结晶度大,熔点及热分解温度较高。  相似文献   

9.
以二枯基氯/四氯化钛/2,6 -二叔丁基吡啶为引发体系,在-80℃条件下采用正离子聚合法合成了异丁烯-对甲基苯乙烯无规共聚物(IB -co -p - MeSt),研究了不同单体投料比(摩尔比)下聚合反应的特征,并通过示差折光指数仪/多角激光光散射仪/紫外检测器、核磁共振氢谱、差示扫描量热法和热重分析对无规共聚物进行了表...  相似文献   

10.
以对苯二酚(HQ)、新型类双酚单体4-(3,5-二甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(DM-DHPZ)和4.4'-二氟二苯酮(DFBP)为原料,经溶液亲核取代反应制备了一系列具有较高摩尔质量的新型聚芳醚酮共聚物,并对其进行了表征。结果表明,共聚物为部分结晶态,具有优异的耐热性和溶解性,其玻璃化转变温度(Tg)为229~275℃,质量损失率为5%时的温度为485~538℃。室温下易溶于N-甲基-2-吡咯烷酮(NMP)、硝基苯(NB)、三氯甲烷(CHCl3)等极性非质子溶剂,部分溶解于N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)。随着共聚物中DM-DH-PZ含量的增加,溶解性明显改善,Tg也逐渐升高。  相似文献   

11.
2,6‐Bis(β‐naphthoxy)benzonitrile (BNOBN) was synthesized by reaction of β‐naphthol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone (NMP) in the presence of KOH and K2CO3. Poly(ether ketone ether ketone ketone)(PEKEKK) /poly(ether ether ketone ketone) (PEEKK) copolymers containing naphthalene and pendant cyano groups were obtained by electrophilic Friedel‐Crafts polycondensation of terephthaloyl chloride (TPC) with varying mole proportions of 4,4′‐diphenoxybenzophenone (DPOBP) and 2,6‐bis(β‐naphthoxy)benzonitrile (BNOBN) using 1,2‐dichloroethane (DCE) as solvent and NMP as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FTIR, DSC, TG, and WAXD. The results indicated that the crystallinity and melting temperature of the polymers decreased with increase in concentration of the BNOBN units in the polymer, the glass transition temperature of the polymers increased with increase in concentration of the BNOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 536°C in N2 atmosphere. The copolymers have good resistance to acidity, alkali, and organic solvents. Because of the melting temperature (Tm) depression with increase in the BNOBN content in the reaction system, the processability of the resultant coplymers could be effectively improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

13.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

14.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

15.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The miscibility and crystallization behavior of poly(ether ether ketone ketone) (PEEKK)/poly(ether imide) (PEI) blends prepared by melt‐mixing were investigated by differential scanning calorimetry. The blends showed a single glass transition temperature, which increased with increasing PEI content, indicating that PEEKK and PEI are completely miscible in the amorphous phase over the studied composition range (weight ratio: 90/10–60/40). The cold crystallization of PEEKK blended with PEI was retarded by the presence of PEI, as is apparent from the increase of the cold crystallization temperature and decrease of the normalized crystallinity for the samples anealed at 300°C with increasing PEI content. Although the depression of the apparent melting temperature of PEEKK blended with PEI was observed, there was no evidence of depression in the equilibrium melting temperature. The analysis of the isothermal crystallization at 313–321°C from the melt of PEEKK/PEI (100/0, 90/10, and 80/20) blends suggested that the retardation of crystallization of PEEKK is caused by the increase of the crystal surface free energy in addition to the decrease of the mobility by blending PEI with a high glass transition temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 769–775, 2001  相似文献   

18.
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

19.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号