首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
量子隐形传态已成为量子信息学中的一个重要研究领域,笔者从节省量子纠缠资源的目的出发,通过极化分束器(PBS)将2个EPR对制备成单个四粒子GHZ纠缠态,并将此四粒子GHZ纠缠态作为量子信道,从而实现三粒子纠缠GHZ态的量子隐形传输.  相似文献   

2.
通过对三粒子纠缠GHZ态隐形传输令牌环网通信过程的分析,得到了影响保真度的2个关节点,并分别对其保真度进行了计算.计算结果表明:当|a|=0、|b|=1或|a|=1、|b|=0时,保真度达最大值1;当|a|=|b|=2/2时,Bell基测量时的保真度为0.5,平均保真度为0.67.Von Neuman测量时的保真度与分析角θ有关,若θ=π/4±kπ (k=0,1,2,…),保真度取最大值1;若θ=π/4±kπ/2 (k=0,1,3,5…)时,保真度取最小值0,平均保真度为0.5.  相似文献   

3.
基于量子签名的量子隐形传态   总被引:1,自引:0,他引:1  
提出了利用三粒子最大纠缠态作为信道的量子信息签名的隐形传态方案.方案中引入一个忠实的第三方作为公证,发送方传输一个单粒子态给接收方.通讯双方与公证人间各自建立密钥,从而保证通讯双方对传态的发送或接收过程不可抵赖.  相似文献   

4.
提出利用GHZ型态的张量积作为量子信道,实现任意单粒子、Bell态和GHZ态的非对称循环(受控)量子隐形传态的2个方案.在方案1中,3个参与者Alice、Bob及Charlie以9粒子纠缠态为量子信道,Alice、Bob及Charlie对自己粒子进行Bell态、单粒子测量并公布测量结果,三方根据所有测量结果对各自粒子进行相应的幺正变换,即可实现非对称循环量子隐形传态.在方案2中,增加一个控制方David, Alice、Bob、Charlie及控制方David共享12粒子纠缠态为量子信道,在控制方David的作用下,Alice把自己的单粒子态传递给Bob, Bob把自己的Bell态传递给Charlie,同时,Charlie也将自己的GHZ态传递给Alice.仅当David与三方相互合作时,非对称循环受控隐形传态才能实现.  相似文献   

5.
提出一种运用扩展的Bell测量实现三粒子任意态的量子隐形传态方案,构建了64种正交的扩展Bell态,运用一个最大纠缠的六粒子量子态作为量子通道,在相互的经典通信和一些相应的单粒子幺正变换的协助下,信息的接受者Bob成功恢复了初始量子态,成功传态的总概率为1.  相似文献   

6.
基于二级GHZ态的有限级量子纯态的多方量子隐形传态   总被引:1,自引:0,他引:1  
杨宇光  温巧燕 《自然科学进展》2005,15(10):1250-1255
有限级未知量子纯态不仅可以通过共享的两级EPR纠缠态隐形传态到一组两级粒子上,而且可以在一定条件下在多方之间进行隐形传态.文中提出的方案表明N方可以利用处于二级最大纠缠Greenberger-Horne-Zeilinger态的(N M)·L(2L≥d1d2d3…dN,di为Ni所隐形传态的未知量子态的维数)个粒子把N个未知量子态隐形传态给M个其他方.也表明二级最大纠缠态粒子可以用来同时对两个量子态进行双向隐形传态.  相似文献   

7.
提出利用一个三粒子部分纠缠GHZ态作为量子信道,实现三粒子GHZ态从发送者传送给两个接收者中任意一个的概率隐形传态方案.若发送者进行一次Bell测量和两次Hadamard门操作后,想得到所需传送的三粒子GHZ态的接收者端引进两个辅助粒子,进行两次控制-非操作,同时根据另一个接收者对手中粒子进行Hadamard门操作后的测量结果实施一个适当的幺正变换,可以一定的概率成功地隐形传送三粒子GHZ态.此方案可推广至隐形传送k粒子GHZ态,这时也只要用一个三粒子GHZ态作为量子信道,但想得到所需传送的k粒子GHZ态的接收者端需引进(k-1)个辅助粒子,进行(k-1)次控制-非操作.  相似文献   

8.
给出了1个任意三粒子态的概率隐形传输方案.信道由1个二粒子部分纠缠态,1个三粒子部分纠缠GHZ态和1个三粒子部分纠缠W态组成.发送者作3次Bell基测量,然后接收者在第3方的帮助下(执行Hadamard操作和简单测量)引入合适的么正变换,就可以使1个任意三粒子态以确定的概率成功地由发送者传给接收者.成功的概率是由3个部分纠缠态的最小的系数决定的.  相似文献   

9.
为了实现经济的控制隐形传态,提出一种利用2个部分纠缠EPR对实现3粒子GHZ态的概率隐形传输方案.该方案首先需要发送者向控制者申请量子信道,若控制者同意,才能通过纠缠交换,使发送者和接收者之间建立量子信道.然后发送者进行一次Bell基联合测量、两次H变换和两次单粒子测量.接收者根据发送者和控制者的测量结果,引入辅助粒子,进行两次控制非门操作和相应的幺正变换,就可以得到原始未知信息态的信息,传输成功的概率为4|a|~2|c|~2.该方案可以推广到N粒子GHZ态的控制隐形传输.若增加到N个EPR对为量子信道,还可以推广到(N-1)个控制者参与的N粒子GHZ态的控制隐形传输.该方案可以很好的应对一般的窃听方式.  相似文献   

10.
提出一个对未知三粒子W纠缠态的量子隐形传态方案.该方案用一个非最大GHZ纠缠态和一个非最大EPR纠缠态作为量子信道实现对未知经典W纠缠态的概率量子隐形传态和对未知一般W纠缠态受控的概率量子隐形传态.  相似文献   

11.
提出了利用GHZ态的关联在通信双方之间建立密钥的方案.在此方案中除了用于检测窃听者是否存在的GHZ态以外,剩余的GHZ态全部用来建立密钥,效率较高,并且每个GHZ态携带3比特的信息.通过研究证明这一方案是安全的.  相似文献   

12.
提出了一个能实现3粒子GHZ态1→2的量子远程克隆方案:运用2个4粒子纠缠态作为量子信道,通过发送者的2次Bell测量、Hadamard变换、单粒子测量及经典通信;2个接收者进行相应的幺正变换、引入附加粒子和通过Toffoli门,就可以得到原未知态的近似拷贝,此方案的保真度与输入态有关.另外,还推广了一种实现N粒子GHZ态1→2的量子远程克隆方案.  相似文献   

13.
提出了一种把N粒子纠缠GHZ态从发送者Alice传送给远方的接收者Bob的控制性隐形传送方案.在传送过程中,N对非最大纠缠EPR态和m粒子GHZ态被选择作为量子通道.发送者Alice先对它所拥有的粒子做贝尔态测量,然后每一位控制者对它们各自所拥有的GHZ态粒子先进行Hadamard变换再做投影测量,之后将它们的最终测量结果通过经典通道告知给接收者Bob,根据接收到的经典信息,Bob通过引入一个辅助粒子并且对它所拥有的粒子做唯一的通用幺正变换,就可以重现原始态.结果显示,传送成功的总概率为2N+1-m∏N k=1|ak|2,任何一个控制者的信息缺失都将导致传送的失败.  相似文献   

14.
利用处于纠缠的一对粒子,作为量子位传态通道,实现远程量子传态,并构造出量子计算网络。  相似文献   

15.
利用GHZ态作为量子信道,再辅以经典信道传送经GHZ态测量后的信息,便可实现量子位的秘密共享.基于上述思想,充分利用六粒子GHZ纠缠态的相关性,通过1次Bell基测量、4次单粒子测量和相应的幺正变换,从而实现了4个量子位的秘密共享方案.  相似文献   

16.
提出了一个决定性的传输2粒子未知态的量子隐形传态方案.在这个方案中,发送者 Alice 和接收者Bob共享一个5粒子团簇态.首先,发送者Alice对自己手中的粒子做一次5粒子von-Neumann联合测量,并把测量的结果通过经典信道告诉接收者 Bob.接受者 Bob 根据发送者 Alice 通知的测量结果,对手中的粒子做相应的幺正变换,就能够获得发送者Alice想要传输的2粒子未知态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号