首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用于超声速旋流分离器中的超声速喷管研究   总被引:7,自引:0,他引:7  
超声速旋流分离器是一种免加热或免加注防冻剂的新型天然气脱水和重烃分离装置,喷管是其关键部件。针对超声速旋流分离器中拉伐尔喷管的特点,对3种不同的喷管设计方法进行了对比分析。结果表明:亚声速收缩段为维托辛思基曲线、喉部为一段光滑圆弧、超声速扩张段按富尔士法设计的喷管出口气流均匀,达到设计的马赫数要求。数值模拟表明,天然气在喷管内绝热膨胀形成超声速气流,在喷管扩张段水和重烃组分凝析。喷管内极短的滞留时间不会形成水合物,亦不需添加防冻剂。  相似文献   

2.
为明确采用收缩-扩张喷管来实现天然气中H2S气体凝结与液化的可行性,对CH4-H2S双组分在收缩-扩张喷管中超声速流动液化过程进行了理论研究与数值模拟。运用流体力学计算软件,结合流动控制方程,分析了入口压力和出口背压对混合气体流动特性的影响。研究结果表明:适当提高入口压力,将使CH4-H2S双组分临界液化温度和压力降低,且停留在气液两相区和液相区的范围增大,促进H2S气体的凝结;随着出口背压(压比)的不断增大,产生激波的位置逐渐向收缩-扩张喷管喉部方向移动,收缩-扩张喷管轴线处的压力和温度波动更加剧烈,破坏了凝结所需要的制冷环境,不利于H2S气体的凝结;当出口背压在60%以上时,制冷环境被完全破坏,H2S气体不能实现凝结。  相似文献   

3.
王俊奇  张钊  徐永高 《石油机械》2011,(4):11-13,93
天然气在喷管中从亚音速加速到跨音速状态,饱和水凝结析出,通过三角翼后产生旋流,进入旋流段,旋流段的气水分离效率是实现跨音速分离的技术关键。对液滴在旋流过程中的受力进行分析,建立并化简液滴运动方程,结合旋流过程中的压降,得出气水分离效率的计算方法和计算流程。通过分析旋流分离过程的影响因素,获得了不同分离效率下液滴直径与旋流段长度的关系。实例计算表明,随着液滴直径的增大,分离效率提高。在给定条件下,确定旋流段长度为180 mm。  相似文献   

4.
天然气超音速旋流分离技术具有结构简单紧凑、无转动部件、可靠性高、无化学添加剂、投资和维护费用低等优点,工业应用前景广阔,但由于其过程的复杂性,理论研究还不成熟。为了推进该技术的大规模工业化应用,在介绍天然气超音速旋流分离器的结构及其工作原理的基础上,阐述了其旋流流动过程、内部凝结过程和内部流动过程等数值模拟的研究新进展,分析了近年来国内外有关的实验研究现状,总结了相关数值模拟和实验研究的进展,并对未来天然气超音速旋流分离技术亟待解决的关键问题进行了展望。研究结果表明:(1)目前关于超音速旋流分离器的数值模拟研究主要集中在旋流流动过程、内部凝结过程和内部流动过程等方面,并取得了一定成果;(2)国内对超音速旋流分离器的实验研究主要集中在低压实验,而在高压天然气的凝结机理及分离机理研究等方面则可能尚存在着一定的差距。结论认为:(1)解决超音速喷管的收缩段曲线和扩张段曲线的匹配、旋流器的结构优化设计与安装位置等问题,有助于气体凝结和提高气液分离效率;(2)开展符合天然气实际操作工况的高压实验,有助于探究天然气旋流分离的凝结和分离机理;(3)亟待在准确揭示高压天然气跨音速流动时其中水分及重烃的凝结机理和分离过程方面进行深入研究,确定影响分离性能的因素,以期为天然气旋流分离器的工程设计与应用奠定坚实的理论基础。  相似文献   

5.
旋流分离器的结构参数对内部流场分布和分离效率等有重要影响。采用数值模拟和室内试验相结合的方法研究了排气管插入长度对柱状旋流分离器分离性能的影响。模拟研究发现,排气管插入长度的加长会引起分离器内部切向速度和轴向速度的衰减,降低旋流强度,同时造成压力损失的增加;但排气管插入分离器内部能够改善分离器分离空间的旋流不稳定性。室内试验研究发现,随着排气管插入长度的增大,分离器高效运行区范围略有缩小。综合各种因素,排气管插入柱状旋流分离器内部可以提升其分离性能,但插入长度不宜过长,研究中的排气管插入长度宜为分离器筒体直径的0.5倍。  相似文献   

6.
《天然气化工》2017,(2):101-105
提出将超声速旋流分离技术应用到天然气脱二氧化碳领域,并通过对Laval喷管内气体流动规律的研究,初步验证其可行性。采用BWRS真实气体状态方程确定喷管喉部尺寸,采用双三次曲线法和圆弧加直线法设计喷管型面,利用FLUENT软件数值模拟所设计喷管内气体的流动过程,并分析入口温度、入口压力以及入口气体组成对二氧化碳液化特性的影响。研究表明:随着气体在Laval喷管中高速膨胀,气流温度、压力降低,在喷管出口可达到二氧化碳气体的液化条件;降低入口温度、提高入口压力或增加气体中二氧化碳的含量均有利于气体的液化。  相似文献   

7.
为了研究旋流油水分离器的影响因素,优化其关键结构尺寸,获得最佳使用工况,开展了旋流分离器的油水分离试验。研究结果表明:随着进液口直径的增大,分离效率先增大后减小,圆锥段角度表现出同样的规律。随着排油口直径的增大,分离效率逐渐减小,圆柱段长度则表现出相反的规律。随着工作压力的增大,分离效率先迅速增大后相对稳定,最后迅速降低。随着排量的增加,分离效率先基本稳定在最优值而后骤降。随着油水比和原油黏度的增大,分离效率呈现出先缓慢下降而后迅速下降的规律。在本试验条件下,旋流油水分离器最优的结构参数组合为进液口直径12 mm,排油口直径3 mm,圆锥段角度11°,圆柱段长度70 mm。优化后的旋流油水分离器的最佳工作压力为1.5~4.0 MPa,日处理量控制在45 m3以内,适用于油水比低于20%、原油黏度低于40 mPa·s的工况。研究结果可指导地面旋流油水分离器的设计及现场应用。  相似文献   

8.
本文描述了Amoco公司对现行旋流式油、水分离技术的评价研究,并介绍了一种改进装置。测定了几种旋流分离器的性能,其尺寸均为南开普顿大学的M·Thew和D·Colman所设计。文章还评价了一些运行参数对装置的影响,探讨了旋流分离器的理想尺寸,如入口尺寸、圆柱直径、锥角、直线段长度等。优化后的旋流分离器获得专利,并与Thew所设计的35mm机进行了性能对比。本文还介绍了评价旋流式分离器以及其它油、水分离装置的性能所使用的仪器和方法。  相似文献   

9.
为了筛选出对气液旋流分离器分离效率影响显著的结构参数,以紧凑型气液旋流分离器为研究对象,基于PB(Plackett-Burman)试验设计,采用数值模拟与室内试验相结合的方法,开展不同结构参数对紧凑型气液旋流分离器分离性能影响的显著性分析。分析结果表明:紧凑型气液旋流分离器结构参数的显著性由高到低的顺序依次为柱体直径d>锥体高度h2>溢流管伸入长度h1>溢流口直径d1>底流口面积S>锥体直径d2>柱体长度H。为了对数值模拟结果的准确性进行验证,随机选取PB试验设计中2组不同结构参数匹配模型,开展室内分离性能试验。对比分析不同气相体积分数条件下分离效率的模拟结果与试验结果,得出随着气相体积分数的增加,模拟与试验的分离效率均呈先升高后趋于稳定的变化趋势的结论。模拟结果与试验结果呈现出了较好的一致性,模拟效率与试验效率的平均误差为2.70%,验证了数值模拟结果及显著性筛选的准确性。研究结果可为进一步提升气液旋流分离性能提供指导。  相似文献   

10.
超声速旋流分离器内天然气液化过程研究   总被引:1,自引:0,他引:1  
目前关于超声速旋流分离器内天然气凝结液化过程的研究较少,为此,通过数值模拟计算对Laval喷管内气体凝结液化过程进行研究,并分析喷管结构对凝结液化的影响。研究结果表明,甲烷气体在喷管内发生了自发凝结现象,但凝结冲波现象并不明显,这与甲烷气体凝结过程液滴生长较慢且凝结潜热较小有关;随着喷管膨胀率的增大,气体过冷度增加越快,其能更早达到凝结液化条件(Wilson点);喷管内最大成核率、液滴数目及湿度(液化率)均随膨胀率的增大而增大,膨胀率从6 000 s-1增大到12 000 s-1,成核率最大值增加154.8%,液滴数目增加79.5%,喷管出口湿度增加51.7%,较大程度提高了液化率;对于扩张段长度固定的喷管,过大膨胀率将导致气体温度或压力低于三相点而无法液化;不同膨胀率及不同入口条件下液化率均较低,需进一步开展多级液化研究。  相似文献   

11.
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.  相似文献   

12.
In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was used to study the influence of the nozzle structure on the swirling intensity and nozzle discharge coefficient. Simulation results indicate that spreading angle of the swirling jet is greater than that of the non-swirling jet, and the swirling intensity of the jet is strongly influenced by the length of the nozzle body but weakly by the number of tangential inlets. Rock breaking tests were conducted to evaluate the performance of the swirling jet. It is found that the swirling jet shows a lower threshold pressure to break the rock samples and could break rock more efficiently compared with the non-swirling jet.  相似文献   

13.
超声速旋流天然气分离器研究   总被引:9,自引:0,他引:9  
超声速旋流分离是天然气处理工艺技术的一大突破。超声速旋流分离器依靠喷管膨胀形成低温超声速流动,依靠超声速翼形成旋流实现水及重烃分离。利用计算流体力学(CFD)技术研究了超声速旋流分离器内的流体物性及流场特性,分析了超声速旋流分离器内温度、压力、速度等特性参数的变化规律,研究了凝析液滴在超声速旋流分离器内的运动轨迹及不同粒径尺寸的液滴在分离器内的停留时间。研究表明,超声速旋流分离器水分及重烃分离效率高,能够替代传统的低温分离工艺。  相似文献   

14.
环形射流泵空化特性的试验研究   总被引:1,自引:0,他引:1  
在简要介绍环形射流泵工作原理的基础上,定义了环形射流泵试验常用的一些技术参数;通过试验所得到的试验数据及引入相关的技术参数绘制了环形射流泵的特性曲线。根据环形射流泵的特性曲线,论述了临界空化数σc、收敛角α、吸入头的面积A1、喉管长径比L2/D2和射流涡旋强度J对环形射流泵空化性能的影响;通过分析这些影响,得到了一些有用的结论和公式,从而提出改善环形射流泵空化特性的一些建议,为高效环形射流泵的设计提供了理论依据。  相似文献   

15.
为提高PDC钻头钻进水平段时的井底射流辅助破岩能力,开展了叶轮式旋转射流喷嘴的射流特性研究。利用k-ε双方程标准湍流模型,对叶轮式旋转射流流场进行了数值模拟,并采用旋流强度和流量系数评价了射流破岩能力。数值模拟结果表明,叶片扭曲角为115°~140°、直柱段无因次长度为0.6~0.8、收缩角为60°~70°时,流量系数和旋流强度可取得最佳值,射流破岩能力最强。根据不同喷距下的旋转射流破岩试验结果,分析了叶轮式旋转射流喷嘴的破岩特性,结果表明,同压降下叶轮式旋转射流破岩直径是普通直射流的近3倍,且喷距在7~11倍喷嘴出口直径时破岩直径最大。研究结果表明,叶轮式旋转射流喷嘴的破岩能力优于普通直射流喷嘴,且通过优化叶轮式旋转射流喷嘴几何参数可提高其破岩能力,加强井底清岩和辅助破岩效果,提高PDC钻头的破岩效率。   相似文献   

16.
再循环腔进口位置对超音速分离器流场影响数值分析   总被引:2,自引:2,他引:0  
超音速分离器作为一种新型、高效的分离设备,具有传统分离方式和设备不可比拟的高效性和经济性。在相同的结构尺寸下,对传统超音速分离器与再循环超音速分离器进行了对比数值模拟。结果表明,在相同的出口压力下,再循环分离器的流场分布较传统分离器好,且能使激波远离喉部,扩大超音速流动的区域范围,有利于气液分离。同时,针对再循环腔不同进口位置对流场稳定性的影响进行了分析。结果表明,进口位置在Laval喷管出口时,流场稳定性较好,有利于提高分离性能。  相似文献   

17.
喷射诱导气浮处理含油污水性能研究   总被引:6,自引:0,他引:6  
为考察喷射诱导气浮用于污水除油的性能,对其流体流动性能及废水脱油动力学性能进行了研究。研究表明:影响喷射器流体力学性能的主要因素是喷嘴与喉管的面积比及工作流体与吸入气体的压力比。在气浮分离室内,依据气泡的密集强度大小,可分为三个区域,并存在两个流体循环流动,且气泡大小受气体流量的影响很小。依据实验结果,得到了用以预估气浮室内充气率的关联式。在分析喷射诱导气浮工作机理的基础上,开发了油水分离动力学模型和脱油效率模型。利用实验结果,得到了用以计算多级模型中参数的关联式。所提出的数学模型提供了建立设计计算和药剂评价的依据。  相似文献   

18.
气井井筒跨音速气水分离与旋流排液技术   总被引:5,自引:2,他引:3  
气井井筒跨音速气水分离技术主要基于超音速喷管与跨音速翼流动机理,通过喷管将流体加速,温度快速下降,致使饱和水凝结成液滴并从旋流天然气中分离出来.由于液滴在喷管冷凝时滞留时间仅有1ms左右,不易形成水合物,不需要加入水合物抑制剂等化学药品,可避免有害化学物的再生.将该技术用于气井井筒的结构设计,对天然气流经跨音速翼进行了数值模拟,获得了流体在流场中的流动规律.  相似文献   

19.
针对超音速雾化排水采气工艺在川西坳陷中浅层气藏应用缺乏理论指导的问题,开展了数值模拟研究及现场试验。首先,基于川西坳陷中浅层有水气藏生产井实际工况建立了超音速雾化喷管数值模型,围绕气井生产动态特征开展了喷管两相流数值模拟,并通过室内实验结果验证了模型正确性,通过求解获得了雾化喷管内部流体各相流动特征参数的分布。对气井生产特征参数以及喷管结构参数进行了敏感性分析,明确影响超音速雾化排水采气工艺应用效果的主控因素,形成了适用于川西坳陷中浅层气藏的超音速雾化排水采气工艺理论。研究表明:喷管渐缩段对于流体流动特性影响较小,而流体流经喷管喉部至渐扩段,各特征参数发生剧烈变化;气体流经雾化喷管被加速达到音速时,临界压力比值为1.35,该数值可作为判断工艺有效性的技术指标;入口压力对工艺效果整体影响较大,而产气量及气液比则主要通过控制喷管入口前井段的携液来影响工艺效果,被气流携带进入喷管内部的积液均在超音速气流作用下实现雾化。基于理论研究设计了施工参数,优选气井开展了现场试验,结果表明超音速雾化排水采气技术可实现气井节流稳压的同时强化见水气井的携液能力,改善井筒流态,降低井筒压力损失,对延长川西坳陷中浅层气井稳产期具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号