首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complexes [Pd(C6H3XH‐2‐R′‐5)Y(N^N)] (X=O, NH; Y=Br, I; R′=H, NO2; N^N=N,N,N′,N′‐tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy)) react with RN?C?E (E=NR, S) or RC≡N (R=alkyl, aryl, NR′′2) and TlOTf (OTf=CF3SO3) to give, respectively, 1) products of the insertion of the C?E group into the C? Pd bond, protonation of the N atom, and coordination of X to Pd, [Pd{κ2X,E‐(XC6H3{EC(NHR)}‐2‐R′‐4)}(N^N)]OTf or [Pd(κ2X,N‐{ZC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf, or products of the coordination of carbodiimides and OH addition, [Pd{κ2C,N‐(C6H4{OC(NR)}NHR‐2)}(bpy)]OTf; or 2) products of the insertion of the C≡N group to Pd and N‐protonation, [Pd(κ2X,N‐{XC6H3(NH?CR)‐2‐R′‐4})(N^N)]OTf.  相似文献   

2.
Tantalum complexes [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NMe2)?CH)py}] ( 4 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NH2)?CH)py}] ( 5 ), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ3N,O,O‐(OCH2)(OCH)py}] (Cp*=η5‐C5Me5) with HC?CCH2NMe2 and HC?CCH2NH2, respectively. The reactions of [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(Ph)?CH)py}] ( 2 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(SiMe3)?CH)py}] ( 3 ) with triflic acid (1:2 molar ratio) rendered the corresponding bis‐triflate derivatives [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(Ph)?CH2)py}] ( 6 ) and [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(SiMe3)?CH2)py}] ( 7 ), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water‐soluble cationic complex [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH)py}]OTf ( 8 ). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H2O){κ3N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH2)py}](OTf)2 ( 9 ). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH)py}](OTf)2 ( 10 ), which afforded the corresponding protonolysis derivative [TaCp*(OTf)23N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH2)py}](OTf) ( 11 ) in solution. Complex 8 reacted with CNtBu and potassium 2‐isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13 , respectively. The molecular structures of complexes 5 , 7 , and 10 were established by single‐crystal X‐ray diffraction studies.  相似文献   

3.
The iminophosphorane Ph2MePNPh (1) reacts with Pd(OAc)2 to give the orthopalladated [Pd(μ-Cl){C6H4(PPh(Me)NPh-κ-C,N)-2}]2 (2) as the racemic mixture, which reacts with Tl(acac) to give [Pd(acac){C6H4(PPh(Me)NPh-κ-C,N)-2}] (3). The X-ray structure of (3) has been determined by diffraction methods. The phosphorus ylide Ph2MePCHC(O)Ph (5) reacts with Pd(OAc)2 to give the dinuclear [Pd(μ-Cl){C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}]2 (6) as a mixture of isomers. Complex (6) reacts with Tl(acac), PPh3 or AgClO4/dppe giving the mononuclear derivatives [Pd(acac){C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}] (7), [PdCl{C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}PPh3] (8) and [Pd{C6H4(PPh(Me)CHC(O)Ph-κ-C,C)-2}(dppe-P,P′)](ClO4) (9), as mixtures of stereoisomers with high diastereomeric excess.  相似文献   

4.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

5.
Three new oxime‐based palladacycles, namely [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppm)]ClO4 ( 1 ), [Pd2{C,N‐C6H4{C(Me)?NOH}‐2}2(dppe)2(μ‐dppe)](ClO4)2 ( 2 ) and [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppmS2)]ClO4 ( 3 ), were synthesized by the reaction of dinuclear oxime complex [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(μ‐Cl)]2 with different diphosphine ligands (dppm, dppe and dppmS2). The synthesized complexes were characterized using Fourier transform infrared, 31P NMR, 1H NMR and 13C NMR spectroscopic methods and elemental analyses, and their molecular structures were elucidated using X‐ray crystallography. The structure of 2 is worthy of note as it is the first oxime palladacycle where there are both bridging (P–) and chelating (P^P) dppe ligands, giving rise to a dinuclear complex. The palladium atom is in a five‐coordinate, square pyramidal P3NC environment, while in 3 the palladium atom is in a distorted square planar environment, coordinated by the oxime ligand and a chelating (S^S) dppmS2 ligand. These complexes were employed as efficient catalysts for the Suzuki–Miyaura cross‐coupling reaction of several aryl bromides with phenylboronic acid. The in vitro cytotoxicity of the compounds was also evaluated against human tumour cell lines (HT29, A549 and HeLa) using the MTT assay method. The results indicate that the dinuclear complex 2 has greater catalytic and anticancer activity in comparison with the mononuclear complexes 1 and 3 .  相似文献   

6.
Large bite bisphosphite ligand, 2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2 (2), is obtained by reacting chlorophosphite, {-OC10H6(μ-S)C10H6O-}PCl (1) with 2,6-pyridinedimethanol in presence of triethylamine.Treatment of 2 with aqueous solution of H2O2 or elemental sulfur resulted in the formation of bis(oxide) or bis(sulfide) derivatives, 2,6-C5H3N{CH2OP(E)(-OC10H6)(μ-S)(C10H6O-)}2 (3, E = O; 4, E = S) in quantitative yield.The 10-membered cationic chelate complex, [RuCl(η6-C10H142-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]Cl (5) is produced in the reaction between [Ru(p-cymene)(μ-Cl)(Cl)]2 and bisphosphite 2, whereas the neutral chelate complex, cis-[Rh(CO)Cl{2,6-C5H3N{CH2OP(-OC10H6(μ-S)C10H6O-)}2}-κPP] (6) is isolated in the reaction of 2 with 0.5 equiv.of [Rh(CO)2Cl]2.Compound 2 on treatment with M(COD)Cl2 (M = Pd, Pt) produce the chelate complexes, [MCl22-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (7, M = Pd;10, M = Pt).Similarly the reaction of bisphosphite 2 with Pd(COD)MeCl affords cis-[PdMe(Cl)η2-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP] (8).Treatment of 2 with [Pd(η3- C3H5)Cl]2 in the presence of AgClO4 furnish the cationic complex, [Pd(η3-C3H52-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]ClO4 (9). The binuclear complex, [Au2Cl2{2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (11) is obtained in the reaction of compound 2 with two equiv. of AuCl(SMe2), where the ligand exhibits bridged bidentate mode of coordination. All the complexes are characterized by the 1H NMR, 31P NMR, elemental analysis and mass spectroscopy data. The cationic ruthenium complex 5 is proved to be an active catalyst for the hydrogenation of styrene and α-methyl styrene.  相似文献   

7.
A new method for the modification of a silylamino ligand has been developed through mono and dual C(sp3)−H/Si−H cross-dehydrocoupling with silanes. The reaction of [LY{η2-(C,N)-CH2Si(Me2)NSiMe3}] (L=bis(2,6-diisopropylphenyl)-β-diketiminato, L′ ( 1L ′); L=tris(3,5-dimethylpyrazolyl)borate, TpMe2 ( 1TpMe2 )) with 2 equivalents of PhSiH3 in toluene gave the complexes [LY{η2-(C,N)-C(SiH2Ph)2Si(Me2)NSiMe3}] (L=L′ ( 2L’ ); L=TpMe2 ( 2TpMe2 )). Moreover, 1TpMe2 reacted with the secondary silanes Ph2SiH2 and Et2SiH2 to afford the corresponding mono C−H activation products [TpMe2Y{η2-(C,N)-CH(SiHR2)Si(Me2)NSiMe3}] (R=Ph ( 4 b ); R=Et ( 4 c )). The equimolar reaction of 1TpMe2 with PhSiH3 also produced the mono C−H activation product 4 a ([TpMe2Y{η2-(C,N)-CH(SiH2Ph)Si(Me2)NSiMe3}(thf)]). A study of their reactivity showed that 4 a facilely reacted with 2 equivalents of benzothiazole by an unusual 1,1-addition of the C=N bond of the benzothiazolyl unit to the Si−H bond to give the C−H/Si−H cross-dehydrocoupling product [(TpMe2)Y{η3-(N,N,N)-N(SiMe3)SiMe2CH2Si(Ph)(CSC6H4N)(CHSC6H4N)}] ( 5 ). These results indicate that this modification endows the silylamino ligand with novel reactivity.  相似文献   

8.
Treatment of the halogen-bridged complexes [Pd{2,5-Me2C6H2C(H)N(2,4,6-Me3C6H2)-C6,N}(μ-X)]2 (1a, X = Cl; 2a, X = Br) with the tertiary diphosphine Ph2PCH2PPh2 (dppm), regardless of the molar ratio used, gave a mixture of two complexes: [Pd{2,5-Me2C6H2C(H)N(2,4,6-Me3C6H2)-C6}(μ-Ph2PCH2PPh2)2(μ-X)]2[PF6] (5a, X = Cl; 6a, X = Br), which presents an A-frame structure, and [Pd{2,5-Me2C6H2C(H)N(2,4,6-Me3C6H2)-C6,N}(Ph2PCH2PPh2-P,P)][PF6], 3a, with the diphosphine as chelating. The mixture could be separated and the corresponding complexes isolated. However, reaction of 1a and 2a with the diphosphine Ph2PC(CH2)PPh2 (vdpp) exclusively gave the mononuclear complex [Pd{2,5-Me2C6H2C(H)N(2,4,6-Me3C6H2)-C6,N}{Ph2PC(CH2)PPh2-P,P}][PF6], 4a, analogous to 3a. Treatment of the halogen-bridged complexes [Pd{1-CH2-2-[HCN(2,4,6-Me3C6H2)]-4-MeC6H3-C,N}(μ-X)]2 (1a′, X = Cl; 2a′, X = Br) with dppm or vdpp in a cyclometallated complex/diphosphine 1:2 M ratio, gave mononuclear complexes with the chelating diphospines [Pd{1-CH2-2-[HCN(2,4,6-Me3C6H2)]-4-MeC6H3-C,N}(Ph2PCH2PPh2-P,P)][PF6], 3a′, and [Pd{1-CH2-2-[HCN(2,4,6-Me3C6H2)]-4-MeC6H3-C,N}{Ph2PC(CH2)PPh2-P,P}][PF6], 4a′. When the reaction was carried out using a cyclometallated complex/diphosphine 1:1 M ratio the dinuclear complexes [{Pd[1-CH2-2-{HCN(2,4,6-Me3C6H2)}-4-MeC6H3-C,N]}2(μ-X)(μ-Ph2PCH2PPh2)][Cl], (5a′, X = Cl; 7a′, X = Br) and [{Pd[1-CH2-2-{HCN(2,4,6-Me3C6H2)}-4-MeC6H3-C,N]}2(μ-Cl){μ-Ph2PC(CH2)PPh2}][Cl], 6a′, were obtained. The molecular structures of complexes 3a, 4a, 5a and 6a′ were determined by X-ray single crystal diffraction.  相似文献   

9.
Sterically demanding 2,6-dibenzhydryl-4-methylphenyl and 1,2,3-triazole based tertiary phosphines, [Ar*{1,2,3-N3C(Ph)C(PR2)}] (R=Ph, 3 ; R=iPr, 4 ) were obtained by the temperature-controlled lithiation of 1-(2,6-dibenzydryl-4-methyl)-5-iodo-4-phenyl-1H-1,2,3-triazole ( 2 ) followed by the reaction with R2PCl (R=Ph, iPr). Treatment of 3 with H2O2, elemental sulfur and selenium yielded chalcogenides [Ar*{1,2,3-N3C(Ph)C(P(E)Ph2)}] (E=O, 5 ; E=S, 6 ; E=Se, 7 ). The reaction of 3 with [Pd(COD)Cl2] in 1 : 1 molar ratio, afforded dimeric complex [Pd(μ2-Cl)Cl{Ar*{1,2,3-N3C(Ph)C(PPh2)}-κ1-P}]2 ( 8 ), whereas the reactions of 3 and 4 with [Pd(η3-C3H5)Cl]2 in 2 : 1 molar ratios produced complexes [Pd(η3-C3H5)Cl{Ar*{1,2,3-N3C(Ph)C(PR2)}-κ1-P}] (R=Ph, 9 ; R=iPr, 10 ). Treatment of 3 with [Pd(OAc)2] in 1 : 1 molar ratio afforded a rare trinuclear complex [{Pd3(OAc)4}{Ar*{1,2,3-N3C(C6H4)C(PPh2)}-κ2-C,P}2] ( 11 ). Treatment of 3 and 4 with [AuCl(SMe2)] resulted in [AuCl{Ar*{1,2,3-N3C(Ph)C(PR2)}-κ1-P}] (R=Ph, 12 ; R=iPr, 13 ). Bulky phosphine 4 was very effective in Suzuki-Miyaura coupling and amination reactions with very low catalyst loading. Molecular structures of 3 – 5 , and 8 – 13 were confirmed by single-crystal X-ray diffraction studies.  相似文献   

10.
Several Pd(II) complexes containing the potentially bidentate ligand 2-(diphenylphosphino)-1-methylimidazole, dpim, have been synthesized and characterized: [PdCl2(dpim)]n (1), [PdCl2(H2O)(dpim-κP)] (2), [PdClMe(μ-dpim-κPN)]2 (3) (previously described), [PdClMe(dpim-κP)2] (4), [Pd(C6F5)2(dpim-κP)2] (5) and [Pd(η3-2-Me-C3H4)(μ-dpim-κPN)]2[PF6]2 (6). The highly insoluble complex 1 dissolves in wet DMSO-d6 to give the water adduct 2 in which a hydrogen bond is established between one of the water hydrogens and the imidazolyl nitrogen. Two types of coordination mode have been found for the dpim ligand in these derivatives, with the ligand behaving as P monodentate and also as a P,N bridge. The transformations between 3 and 4 demonstrate the hemilability of the dpim ligand. Complex 6 was obtained as a mixture of two pairs of enantiomers (R,S)/(S,R) and (R,R)/(S,S). Analysis of the fluxional behaviour of 6, in which the allyl group acts as a “reporter ligand”, indicates that Pd-N bond rupture takes place - again providing evidence of the hemilabile character of the dpim ligand.  相似文献   

11.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

12.
Treatment of β-diketiminate ligands bearing different N-aryl monoatomic substituents [HLH = (C6H5)N = C(Me)CH=C(Me)NH(C6H5), HLF = (2,6-F2C6H3)N=C(Me)CH=C(Me)NH(2,6-F2C6H3), and HLCl = (2,6-Cl2C6H3)N=C(Me)CH=C(Me)NH(2,6-Cl2C6H3)] with Ln(CH2SiMe3)3(THF)2 (Ln = Y and Lu) afforded a variety of β-diketiminato rare-earth metal complexes depending on substituents, namely, phenyl ring C–H bond activated complexes (L')(LH)Lu(THF) ( 1b , L' = (C6H4)N = C(Me)CH=C(Me)N(C6H5)), six-coordinate homoleptic complexes (LH)3Ln [Ln = Y ( 1aa ), Lu ( 1bb )], five-coordinate monoalkyl complexes (LF)2Ln(CH2SiMe3) [Ln = Y ( 2a ), Lu ( 2b )], and four-coordinate dialkyl complexes (LCl)Ln(CH2SiMe3)2 [Ln = Y ( 3a ), Lu ( 3b )]. All these complexes were characterized with NMR spectroscopy, and lutetium complexes 1b , 1bb and 3b were structurally validated by single-crystal X-ray diffraction analysis. Moreover, dialkyl complexes 3 promoted the polymerization of 2-vinylpyridine (2-VP) to produce atactic poly(2-vinylpyridine) (P2VP) with quantitative yield. On activation with an equimolar amount of [Ph3C][B(C6F5)4], complexes 3 afforded highly isotactic P2VP with an mm value up to 94 %. Both 1H NMR spectrum and MALDI-TOF mass analysis of an oligomer indicate that the polymerization was initiated by coordination insertion of 2-VP into the Y-CH2SiMe3 bond.  相似文献   

13.
Treatment of the chloro-bridged dinuclear complex [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}(μ-Cl)]2 (1) with homobidentate [P,P], [As,As], [N,N], and heterobidentate [P,As], [P,N] ligands in a 1:1 molar ratio gave the dinuclear complexes [{Pd[3,4-(MeO)2C6H2C(H)N(Cy)-C6,N](Cl)}2{μ-L}] (L = Ph2PC4H6(NH)CH2PPh2 (2); Ph2As(CH2)2AsPh2 (3); 1,3-(NH2CH2)2C6H4 (4); Ph2P(CH2)2AsPh2 (5); Ph2P(CH2)2NH2 (6)), with the bidentate ligands bridging the two cyclometallated fragments.The reaction with the homobidentate ligands in a 1:2 molar ratio in the presence of NaClO4 afforded the mononuclear compounds [[Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,P}][ClO4] (L = Ph2PC4H6(NH)CH2PPh2 (7); (o-Tol)2P(CH2)2P(o-Tol)2 (8)), [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4] (9) and [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-N,N}][ClO4] (L = NH2(CH2)3NH2 (10); NH2(C6H8)CH2(C6H8)NH2 (11); 1,3-(NH2CH2)2C6H4 (12); 1,3-(NH2)2C5H3N (13); NH2(C6H4)O(C6H4)NH2 (14); NMe2(CH2)2NMe2 (15)), in which the chloro ligands are absent and the bidentate ligands are chelated to the palladium atom.Reaction of 1 with Ph2P(CH2)2AsPh2 in 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the analogous mononuclear compound [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)2AsPh2-P,As}][PF6] (16); whereas reaction with Ph2P(CH2)3NH2 gave [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)3N(CMe2)-P,N}][PF6] (17), derived from intermolecular condensation between the aminophosphine and acetone. Condensation of the NH2 group was precluded by change of solvent, using dichloromethane.Iminophoshines also reacted with 1 in 1:2 molar ratio in acetone to give a new series of mononuclear cyclometallated complexes: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,N}][ClO4] (L = Ph2PC6H4C(H)NCy (20); Ph2PC6H4C(H)NC(CH3)3 (21); Ph2PC6H4C(H)NNMe2 (22); Ph2PC6H4C(H)NNHMe (23); Ph2PC6H4C(H)NNHPh (24)). Analogous complexes with a stable P,O-chelate were obtained using bidentate [P,O] donor ligands: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,O}][Cl] (L = 2-(Ph2P)C6H4CHO (25); Ph2PN(Me)C(O)Me (26)).The crystal structures of compounds 1, 5, 15, 16, 18, 20 have been determined by X-ray crystallography.  相似文献   

14.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

15.
The ternary complexes [Pd(RaaiX)(SS)ClO4) where RaaiX is a N(1)-alkyl-2-(arylazo)imidazole (p-RC6H4N =NC3H2NN(1) X; X = Me, or Et, and R = H, Me or Cl) and SS = N,N-diethyldithiocarbamate or morpholinedithiocarbamate have been prepared and characterized by elemental analysis, i.r., u.v.-vis. and 1H-n.m.r. data. Electrochemical studies show azo reduction. The complexes are thermally unstable and decompose to bis(dithiocarbamato)palladium(II) in solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

17.
The dinuclear platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1) was found to react with 2-(ROCH2)C5H4N (R =  Me, 2a; H, 2b) yielding a cationic mononuclear platina-β-diketone [Pt{(COMe)2H}{2-(MeOCH2)C5H4N}]Cl (3) and an acetyl(chloro)platinum(II) complex [Pt(COMe)Cl{2-(HOCH2)C5H4N}] (4), respectively. The reaction of 1 with 8-(methylthio)quinoline (5) resulted in the formation of [Pt(COMe)Cl{8-(MeS)C9H6N}] (6). The identities of all complexes were established by microanalysis, 1H, and 13C NMR spectroscopy. Single-crystal X-ray diffraction analysis showed 6 to be square-planar platinum(II) complex with N and C atoms as well as Cl and S atoms in mutually trans positions (configuration index: SP-4-2). In accordance with this, quantum chemical calculations on the DFT level of theory revealed a higher stability of complex 6 having a SP-4-2 configuration vs. the analogous complex in SP-4-3 configuration. The distinctly different reactivity of 1 with 2a on the one hand and with 2b and 5 on the other is discussed in terms of the HSAB concept and a deprotonation/reprotonation reaction.  相似文献   

18.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

19.
The synthesis and characterization of pyrazole derivatives of general formula [C6H4-4-R-1-{(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)}] [R = OMe (1a) or H (1b)] with a ferrocenylmethyl substituent are described.The study of the reactivity of compounds 1 with palladium(II) acetate has allowed the isolation of complexes (μ-AcO)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (2) [R = OMe (2a) or H (2b)] that contain a bidentate [C(sp2, phenyl), N] ligand and a central “Pd(μ-AcO)2Pd” unit.Furthermore, treatment of 2 with LiCl produced complexes (μ-Cl)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (3) [R = OMe (3a) or H (3b)] that arise from the replacement of the acetato ligands by the Cl.Compounds 2 and 3 also react with PPh3 giving the monomeric complexes [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}X(PPh3)] {X = AcO and R = OMe (5a) or H (5b) or X = Cl and R = OMe (6a) or H (6b)}, where the phosphine is in a cis-arrangement to the metallated carbon atom. Treatment of 3 with thallium(I) acetylacetonate produced [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}(acac)] (7) [R = OMe (7a) or H (7b)]. Electrochemical studies of the free ligands and the cyclopalladated complexes are also reported. The dimeric complexes 3 also react with MeO2C-CC-CO2Me (in a 1:4 molar ratio) giving [Pd{(MeO2C-CC-CO2Me)2C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}Cl] (8) [R = OMe (8a) or H (8b)], which arise from the bis(insertion) of the alkyne into the σ{Pd-C(sp2, phenyl)} bond of 3.  相似文献   

20.
The metal complexes [Ni{N(Ar)C(R)C(H)Ph}2) ( 2 ) (Ar = 2,6‐Me2C6H3, R = SiMe3), [Ti(Cp2){N(R)C(But)C(H)R}] ( 3 ), M{N(R)C(But)C(H)R}I [M = Ni ( 4 a ) or Pd ( 4 b )] and [M{N(R)C(But)C(H)R}I(PPh3)] [M = Ni ( 5 a ) or Pd ( 5 b )] have been prepared from a suitable metal halide and lithium precursor of ( 2 ) or ( 3 ) or, alternatively from [M(LL)2] (M = Ni, LL = cod; M = Pd, LL = dba) and the ketimine RN = C(But)CH(I)R ( 1 ). All compounds, except 4 were fully characterised, including the provision of X‐ray crystallographic data for complex 5 a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号