首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To produce a large quantity of the angiotensin-converting-enzyme(ACE)-inhibiting peptide YG-1, which consists of ten amino acids derived from yeast glyceraldehyde-3-phosphate dehydrogenase, a high-level expression was explored with tandem multimers of the YG-1 gene in Escherichia coli. The genes encoding YG-1 were tandemly multimerized to 9-mers, 18-mers and 27-mers, in which each of the repeating units in the tandem multimers was connected to the neighboring genes by a DNA linker encoding Pro-Gly-Arg for the cleavage of multimers by clostripain. The multimers were cloned into the expression vector pET-21b, and expressed in E. coli BL21(DE3) with isopropyl β-d-thiogalactopyranoside induction. The expressed multimeric peptides encoded by the 9-mer, 18-mer and 27-mer accumulated intracellularly as inclusion bodies and comprised about 67%, 25% and 15% of the total proteins in E. coli respectively. The multimeric peptides expressed as inclusion bodies were cleaved with clostripain, and active monomers were purified to homogeneity by reversed-phase high-performance liquid chromatography. In total, 105 mg pure recombinant YG-1 was obtained from 1 l E. coli culture harboring pETYG9, which contained the 9-mer of the YG-1 gene. The recombinant YG-1 was identical to the natural YG-1 in molecular mass, amino acid sequence and ACE-inhibiting activity. Received: 6 January 1998 / Received revision: 23 February 1998 / Accepted: 24 February 1998  相似文献   

2.
l-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS–PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.  相似文献   

3.
A method is described for the production of recombinant isotopically enriched peptides in E. coli. Peptides are produced in high yield as fusion proteins with ketosteroid isomerase which form insoluble inclusion bodies. This insoluble form allows easy purification, stabilizes the peptide against degradation and prevents bactericidal activity of the peptide. Cyanogen bromide cleavage released peptide which was conjugated with alkylamines to form lipopeptide. An important advantage of this system is that it allows production of peptides that are toxic to bacteria, which we have demonstrated on a dodecapeptide based on residues 21–31 of human bactericidal protein lactoferrin.  相似文献   

4.
Production of antifungal recombinant peptides in Escherichia coli   总被引:4,自引:0,他引:4  
Antifungal peptides derived from the human bactericidal/permeability-increasing protein (BPI) were produced in Escherichia coli as fusion proteins with human BoneD. Bacterial cultures transformed with the gene encoding the fusion protein were grown to a high cell density (OD(600)>100), and induced with L-arabinose to initiate product expression. Fusion protein accumulated into cytoplasmic inclusion bodies and recombinant peptide was released from BoneD by acid hydrolysis at an engineered aspartyl-prolyl dipeptide linker. Acid hydrolysis of purified inclusion bodies at pH <2.6 followed Arrhenius kinetics and did not require prior inclusion body solubilization in detergents or denaturants. Surprisingly, at pH <2.6 and 85 degrees C, cell lysis and aspartyl-prolyl hydrolysis with concomitant peptide release occurred simultaneously. Bacterial cultures were, therefore, adjusted to approximately pH 2.6 with HCl directly in the bioreactor and incubated at elevated temperature. Peptide, which is soluble in the aqueous acidic environment, was separated from the insoluble material and purified using column separation techniques. Recombinant peptide was separated from the hydrolyzed bioreactor culture with >76% recovery and a final peptide purity of >97%. Antifungal peptide prepared by recombinant and solid phase synthesis methods demonstrated similar activity against Candida sp. in a broth microdilution assay.  相似文献   

5.
For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca2+, and hemin.  相似文献   

6.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

7.
The tandem repeats of LFB15(W4,10)-HP(4-16) (LH) gene were cloned into vector pET32a(+) for recombinant expression in Escherichia coli. The E. coli C43(DE3) was successfully used as the expression host to avoid the cell death during induction in E. coli BL21(DE3). Fusion LH dimer was expressed as inclusion body at a portion of 35% of total cell protein and could be well purified by Ni2+-chelating chromatography. The recombinant LH was released by the cleavage of 50% formic acid, and its yield reached 11.3 mg/l with purity of 95%. The MIC50 of 3.6 and 1.9 μM of recombinant LH against E. coli CMCC 44102 and Bacillus subtilis ATCC 6633 were determined, respectively. The results demonstrated that expression of tandem LH gene in E. coli C43(DE3) and formic acid cleavage would provide a potent efficient platform for the production of interested peptides. Zi-gang Tian and Tian-tang Dong contributed equally to this paper.  相似文献   

8.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

9.
Peptide P11‐4 (QQRFEWEFEQQ) was designed to self‐assemble to form β‐sheets and nematic gels in the pH range 5–7 at concentrations ≥12.6 mM in water. This self‐assembly is reversibly controlled by adjusting the pH of the solvent. It can also self‐assemble into gels in biological media. This together with its biocompatibility and biodegradability make P11‐4 an attractive building block for the fabrication of nanoscale materials with uses in, for example, tissue engineering. A limitation to large‐scale production of such peptides is the high cost of solid phase chemical synthesis. We describe expression of peptide P11‐4 in the bacterium Escherichia coli from constructs carrying tandem repeats of the peptide coding sequence. The vector pET31b+ was used to express P11‐4 repeats fused to the ketosteroid isomerase protein which accumulates in easily recoverable inclusion bodies. Importantly, the use of auto‐induction growth medium to enhance cell density and protein expression levels resulted in recovery of 2.5 g fusion protein/L culture in both shake flask and batch fermentation. Whole cell detergent lysis allowed recovery of inclusion bodies largely composed of the fusion protein. Cyanogen bromide cleavage followed by reverse phase HPLC allowed purification of the recombinant peptide with a C‐terminal homoserine lactone (rP11‐4(hsl)). This recombinant peptide formed pH dependent hydrogels, displayed β‐structure measured by circular dichroism and fibril formation observed by transmission electron microscopy. Biotechnol. Bioeng. 2009;103: 241–251. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Bacillus cereussecretes a nonspecific phospholipase C (PLC) that catalyzes the hydrolysis of phospholipids to yield diacylglycerol and a phosphate monoester.B. cereusPLC has been overexpressed with its signal sequence inEscherichia coliusing a T7 expression system. The expressed enzyme formed intracellular inclusion bodies which were solubilized in the presence of 8 urea. Renaturation was initiated by gradual removal of urea and addition of zinc ions. The signal peptide was specifically cleaved by a protease, clostripain, added when the urea concentration was 1.5 . Factors that led to protein reaggregation included rapid removal of urea, use of Tris instead of barbital buffer, and presence of the signal peptide when the urea concentration was below 1.5 . The folded protein was purified by Q-Sepharose Fast Flow chromatography to yield a preparation >99% pure. The final yield of active enzyme was 30–40 mg per liter of culture. The recombinant PLC exhibited biochemical and kinetic properties identical to those of extracellularly produced PLC fromB. cereus.Site-specific mutagenesis of Asn-134 was carried out as a test of the general effectiveness of the refolding procedure.  相似文献   

11.
Goldfish pituitary contains two types of growth hormones. One with five cysteine residues (type-I) similar to other Cyprinid GHs, and the other with four Cys residues (type-II) similar to those of other fish and tertapod species. Recombinant goldfish type II GH (gfGH-II) was produced in Escherichia coli using the pRSETB expression vector. The gfGH-II was produced fused to a leader sequence, which sequestered into inclusion bodies after expression. The inclusion bodies were solubilized using sodium hydroxide and the fusion protein purified by chelating affinity chromatography. Subsequently, gfGH-II was cleaved and analyzed by Western blotting, using a specific antiserum. For comparison we also produced recombinant common carp GH (cGH) which has 95% similarity to gfGH-II, and tested their growth promoting activity in goldfish. Both forms of GH significantly increased the growth rate of goldfish (P<0.05), although cGH was found to have a somewhat higher potency than gfGH-II.  相似文献   

12.
The antimicrobial peptide fowlicidin‐2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin‐2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin‐2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin‐2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET‐32a(+), which features fusion protein thioredoxin at the N‐terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria‐Bertani (LB) medium. After isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction, the fowlicidin‐2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse‐phase high‐performance liquid chromatography (RP‐HPLC), ~6.0 mg of fowlicidin‐2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram‐positive and Gram‐negative bacteria, and even drug‐resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large‐scale production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:369–374, 2015  相似文献   

13.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

14.
The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent.  相似文献   

15.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   

16.
重组蛋白在大肠杆菌中表达时,往往面临着形成包涵体的问题,而重组蛋白若是分泌至周质空间则基本解决了这一问题,周质空间的周质蛋白不仅能帮助重组蛋白正确折叠还有利于二硫键的生成。信号肽是一段由15-30个氨基酸组成,被融合在重组蛋白N端的短肽,按照结构、功能的不同可以划分为N区、H区和C区,具有引导重组蛋白转运至细胞周质空间的作用。本文综述了信号肽的结构组成、作用机理和基本分泌途径,讨论了信号肽的高效转运和筛选方法,总结了在大肠杆菌中重组蛋白融合信号肽实现周质表达的新进展,并对未来高效信号肽选择方面的研究进行了探讨。  相似文献   

17.
Su L  Chen S  Yang K  Liu C  Liang Z 《Biotechnology letters》2006,28(12):857-862
Thrombopoietin (TPO) acts synergistically with stem cell factor (SCF) in hematopoiesis and megakaryopoiesis. In this work, we designed the expression of SCF fused with the monomer or the dimer of TPO mimetic peptide through a flexible peptide linker. The recombinant fusion proteins were produced in E. coli DH5α at up to 25% of total cell proteins. The resultant inclusion bodies were refolded by dilution and purified by ion-exchange chromatography. Subsequent biological activity assays showed that the fusion proteins exhibited higher potency than recombinant human SCF, indicating that they have a potential role for pharmaceutical applications.  相似文献   

18.
We have successfully created polyoleosins by joining multiple oleosin units in tandem head‐to‐tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies‐containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.  相似文献   

19.
Antimicrobial peptides are part of the innate immune system of vertebrates and invertebrates. They are active against gram-negative and gram-positive bacteria, fungi, and protozoa. Currently, most antimicrobial peptides are extracted from host organisms or produced by solid-phase peptide synthesis. Recombinant protein expression in Escherichia coli is a tool for greater production yields at a decreased cost and reduces the use of hazardous materials. We have constructed a concatamer of indolicidin and successfully expressed a fusion product with thioredoxin in E. coli BL21DE3. Codons for methionine residues flanking individual indolicidin genes were incorporated for cyanogen bromide cleavage of the fusion protein and liberation of active monomeric indolicidin. Peptide yields of 150 μg/l monomeric indolicidin were achieved in this first report of recombinant production of indolicidin with demonstrated antimicrobial activity.  相似文献   

20.
To develop a strategy of differentiating infected from vaccinated animals (DIVA) with foot-and-mouth disease virus (FMDV), a short (27aa) peptide containing three conserved linear B cell epitopes of the FMDV 3B nonstructural protein was designed. This novel BF peptide was synthesized using a gene splicing by overlap extension protocol with preferred codons for Escherichia coli. The resultant eight tandem repeat multimer (1, 2, 4, 6, 8, 16, 24, and 32BF) were expressed as soluble fusion proteins in E. coli. An indirect ELISA was developed based on the recombinant 8BF protein with the aim of specifically distinguishing antibodies induced by FMDV infection but not those induced by vaccination. Using the cut-off value of 0.3, the sensitivity of the assay was 96.8% and the specificities for naive and vaccinated cattle were 99.8 and 99.0%, respectively. The performance of the newly developed epitope-based ELISA was compared with three commercial NSP ELISA kits. The 8BF-ELISA appears to be a promising DIVA test for FMD control and eradication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号