首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distributed consensus output tracking problem is dealt with for a class of nonlinear semi-strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances and uncertain nonlinear virtual control coefficients of the subsystems. The systems are under a directed communication graph, where the leader node is the root. The controller is designed in a backstepping manner, and the dynamic surface technique is adopted to avoid direct differentiation. At each step of virtual controller design, a prescribed performance controller is constructed to achieve prescribed transient performance so that the system states remain in the feasible domain. Then each virtual controller is enhanced by a finite-time disturbance observer which estimates the disturbance term in a finite-time. The properties of the control system are analysed theoretically. It is clarified that the prescribed performance control technique ensures that the system signals stay in the feasible domain, whereas sufficiently small ultimate control errors can be achieved by the finite-time disturbance observers. Finally, the performance of the proposed methods is confirmed by numerical studies.  相似文献   

2.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.  相似文献   

4.
In this paper, a novel robust adaptive control scheme for a class of uncertain nonlinear systems is proposed using disturbance observer and backstepping method.Firstly, a disturbance observer is developed using radial basis function(RBF) neural network.The parameter updated law of the RBF neural network is given for monitoring subsystem disturbance well.The robust adaptive control scheme is then presented with backstepping method based on the designed disturbance observer.Semiglobal uniform ultimate bounded...  相似文献   

5.
基于扰动观测器和有限时间控制的永磁同步电机调速系统   总被引:2,自引:0,他引:2  
针对采用矢量控制的永磁同步电机调速系统提出一种复合控制方法:首先用扰动观测器观测出系统中由于模型参数变化,负载改变等产生的扰动,并用此观测值作为前馈量补偿到输入端;然后运用有限时间控制方法设计系统前向通道中的反馈控制器;最后给出了控制器参数与速度误差收敛性能之间的数学关系.仿真表明,基于扰动观测器的有限时间控制具有更好的抗扰动性能和更优越的收敛性能.  相似文献   

6.
This paper addresses the problems of disturbance estimation and anti‐disturbance control for nonlinear system with exogenous disturbance, which is generated from an unknown exogenous system. The state observer and the adaptive disturbance observer are designed, simultaneously. Compared with the existing methods, which assumed that the exogenous system parameter matrix was known, our disturbance observer is more applicable in practice. Utilizing the estimation information, an observer‐based dynamic output feedback controller is designed, which avoids the influence of output disturbance on the closed‐loop system, and contains a disturbance compensation term to compensate the input disturbance. Finally, simulations are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The finite-time almost disturbance decoupling problem is investigated for nonlinear systems in strict feedback form using backstepping. A recursive design algorithm is proposed to construct a continuous stabilising feedback controller so that the corresponding closed-loop system is finite-time stable when there is no external disturbances and the influence of the external disturbances on the output is attenuated to a given degree. This paper is the first to solve the finite-time almost disturbance decoupling problem. Two examples are given to show the feasibility of the proposed design method.  相似文献   

8.
利用一种非线性干扰观测器观测减摇鳍系统的不确定性和随机海浪干扰,通过选择设计参数使观测误差指数收敛.针对引入非线性干扰观测器后的系统采用滑模反演法设计控制器,控制律的设计保证了闭环系统的稳定性.仿真结果表明,在不同浪向角和航速的各种海况下采用该控制策略,系统均能取得较好的减摇效果,同时能很好地克服对象的不确定性和随机海浪干扰,鲁棒性较强.  相似文献   

9.
Semi-global finite-time observers for nonlinear systems   总被引:5,自引:0,他引:5  
Yanjun  Xiaohua   《Automatica》2008,44(12):3152-3156
It is well known that high gain observers exist for single output nonlinear systems that are uniformly observable and globally Lipschitzian. Under the same conditions, we show that these systems admit semi-global and finite-time converging observers. This is achieved with a derivation of a new sufficient condition for local finite-time stability, in conjunction with applications of geometric homogeneity and Lyapunov theories.  相似文献   

10.
In order to assure maximum energy conversion, the angular velocity of the wind turbine rotor tracks a nominal profile depending on the wind speed. However, conventionally, wind flows present non‐differentiable components due to turbulence and gust winds, which affect the wind energy management. Thus, a fast and robust controller is required to induce such nominal regime for maximum energy transfer. A fractional‐order nonlinear disturbance‐observer (FNDOB) is proposed in this paper to cancel the non‐differentiable components of the wind speed, as well as dynamic uncertainties and other aerodynamic disturbances. The proposed FNDOB is based on continuous fractional sliding modes, assuring that disturbances and uncertainties are exactly compensated in finite‐time. A representative simulation study for a variable‐speed wind turbine is presented to show the reliability of the proposed scheme, and a comparative analysis with respect to a conventional linear disturbance observer based control is presented.  相似文献   

11.
基于干扰观测器的一类不确定非线性系统鲁棒H控制   总被引:1,自引:0,他引:1  
为了降低控制器对干扰的要求,基于干扰观测器提出一类多输入多输出不确定非线性系统的鲁棒H∞控制方法.将系统的内部不确定性和外部干扰组成复合干扰,设计基于小波神经网络的复合干扰观测器,并提出干扰观测器的参数调节方案使观测器能以高精度逼近复合干扰.同时在控制器中引入鲁棒控制项用来抑制观测器误差给系统带来的影响,所设计的控制器能使系统的跟踪误差小于一个给定的性能指标.最后给出一个仿真算例验证了本控制方案的有效性.  相似文献   

12.
本文首先讨论了非线性系统的有限时间稳定, 并给出了其全局有限时间稳定的一个充分条件. 然后, 利用几何齐次理论、Lyapunov稳定性理论, 并通过构造一个增益适应律, 对一类具有下三角结构的非线性系统, 讨论其全局有限时间稳定状态观测器的设计问题, 所设计的观测器是连续非光滑的, 能够在有限时间段内实现状态的精确重构.  相似文献   

13.
The paper proposes a novel control design for nonlinear systems with multiple uncertainties and nonlinear measurement. The output linearization is utilized to handle the nonlinearities in system dynamics and measurement. Firstly, the integrator chain for nonlinear systems with multiple uncertainties is analyzed. Based on the fundamental integrator chain form, the equivalent total effect of multiple uncertainties is summarized as total disturbance. By timely estimating and compensating for the total disturbance, an active disturbance rejection control design to handle both multiple uncertainties and nonlinear measurement is proposed. Moreover, the transient performance of the corresponding closed‐loop system is rigorously studied, which theoretically reveals the high consistence of the tracking performance despite various multiple uncertainties.  相似文献   

14.
In disturbance observer (DO)‐based control, control input attenuates a disturbance using observer output. Thus, the input may not achieve the attenuation if the input term includes uncertainty. Therefore, in order to correctly suppress the disturbance, it is essential to consider the uncertainty existing in the input term, and thus this article focuses on a nonlinear uncertainty in the input term. This article analyzes the stability and robustness of a DO‐based nonlinear control system with both the disturbance and the input uncertainty. We address the case that the disturbance and the uncertainty depend on time and states of a controlled system. The disturbance and the uncertainty are gathered in an integrated disturbance, and the integrated disturbance depends on many variables: the states, the control input, and the time. Therefore, a norm estimations for the disturbance and a time variation of the disturbance is difficult without knowledge of the state trajectory. Hence, a slope‐restriction for the disturbance is used for the stability analysis. Based on the mathematical analysis, we show input‐to‐state stability conditions due to extend the application class of the DO‐based controller to a control system with the disturbance and the nonlinear input uncertainty. The analytical results are verified by numerical simulations.  相似文献   

15.
This study concerns disturbance rejection for a modified repetitive control system (MRCS) that contains a strictly proper plant with time-varying uncertainties. Since an MRCS is affected by both periodic and aperiodic disturbances, and since the disturbances are often unknown, an equivalent-input-disturbance (EID)-based estimator was added to an MRCS to yield an EID-based MRCS that compensates for all types of disturbances. In this system, the repetitive controller ensures tracking of a periodic reference input, and the incorporation of an EID estimate into the control input enables rejection of unknown periodic and aperiodic disturbances. A robust stability condition for the MRCS was established in the form of a linear matrix inequality, and the condition was used to design the parameters of the controller. This design method handles uncertainties and enables the preferential adjustment of the tracking and control performance of the MRCS. Simulation results demonstrate the validity of the method.  相似文献   

16.
黄东  孙国法 《控制理论与应用》2016,33(11):1501-1507
本文针对高阶时延系统同时存在系统不确定性和未知输入时延的情况,考虑控制器信号的复杂性问题,在动态面控制方法的基础上,引入自抗扰控制技术设计了自抗扰动态面控制器.利用反步法设计动态面控制信号,采用跟踪微分器对虚拟控制信号滤波,避免了由于对虚拟控制信号重复微分产生的"复杂性爆炸"问题;在控制信号的基础上叠加扰动补偿项,补偿项由扩张状态观测器实时在线估计产生,保证了控制信号的实时性,同时简化了控制器结构以便于实际应用.在闭环系统稳定性判别中运用李雅普诺夫理论做出详细分析.最后,数值仿真结果验证了所提出方法的有效性.  相似文献   

17.
This work considers the problem of distributed consensus tracking control of second-order uncertain nonlinear systems under a directed communication graph which contains a spanning tree, where the leader node is the root. It is assumed that the followers receive only the relative positions from the neighbours. For the purpose of consensus tracking controller design, in each follower, a group of K-filters is introduced so that the necessity of velocity estimating is avoided. Then we can express each follower's tracking error dynamics as a second-order system with mismatched uncertainties. And hence we can design a robust consensus tracking controller for each follower by using the combination of the backstepping design and the disturbance observer based control using only relative position information. Theoretical analysis is performed to show that the DOBs' estimation errors can be made to decay to be sufficiently small very quickly before the system states escape from the feasible region. Then we show that all the followers' states track those of the leader with arbitrarily small ultimate error bounds. And simulation examples are provided to demonstrate the performance of the proposed method.  相似文献   

18.
This paper considers the problem of robust disturbance attenuation for a class of uncertain nonlinear networked control systems. Takagi-Sugeno fuzzy models are firstly employed to describe the nonlinear plant. Markov processes are used to model the random network-induced delays and data packet dropouts. The Lyapunov-Razumikhin method has been used to derive such a controller for this class of nonlinear systems such that it is stochastically stabilizable with a disturbance attenuation level. Sufficient conditions for the existence of such a controller are derived in terms of the solvability of bilinear matrix inequalities. An iterative algorithm is proposed to change this non-convex problem into quasi-convex optimization problems, which can be solved effectively by available mathematical tools. The effectiveness of the proposed design methodology is verified by a numerical example.  相似文献   

19.
Small-scale helicopters are very attractive for a wide range of civilian and military applications due to their unique features. However, the autonomous flight for small helicopters is quite challenging because they are naturally unstable, have strong nonlinearities and couplings, and are very susceptible to wind and small structural variations.A nonlinear optimal control scheme is proposed to address these issues. It consists of a nonlinear model predictive controller (MPC) and a nonlinear disturbance observer. First, an analytical solution of the MPC is developed based on the nominal model under the assumption that all disturbances are measurable. Then, a nonlinear disturbance observer is designed to estimate the influence of the external force/torque introduced by wind turbulences, unmodelled dynamics and variations of the helicopter dynamics. The global asymptotic stability of the composite controller has been established through stability analysis. Flight tests including hovering under wind gust and performing very challenging pirouette have been carried out to demonstrate the performance of the proposed control scheme.  相似文献   

20.
In this paper,the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput(MIMO)nonlinear systems in the presence of system uncertainties,unknown non-symmetric input saturation and external disturbances.Fuzzy logic systems(FLS)are used to approximate the system uncertainty of MIMO nonlinear systems.Then,the compound disturbance containing the approximation error and the timevarying external disturbance that cannot be directly measured are estimated via a disturbance observer.By appropriately choosing the gain matrix,the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set.This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications,in particular unknown non-symmetric input saturation and control singularity.Within this setting,the disturbance observer technique is combined with the FLS approximation technique to compensate for the efects of unknown input saturation and control singularity.Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques.Numerical simulation results are presented to illustrate the efectiveness of the proposed tracking control schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号