首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质直接电化学研究在生物电化学中具有重要地位,对于蛋白质结构-功能研究、蛋白质电子传递过程的热力学和动力学研究都有着重要意义,而且是研制第三代电化学生物传感器的基础.本文对在裸电极、分子自组装修饰电极和模拟生物膜修饰电极上进行蛋白质直接电化学的研究及相关应用进行简要综述.  相似文献   

2.
蛋白质直接电化学研究在生物电化学中具有重要地位,对于蛋白质结构.功能研究、蛋白质电子传递过程的热力学和动力学研究都有着重要意义,而且是研制第三代电化学生物传感器的基础。本文对在裸电极、分子自组装修饰电极和模拟生物膜修饰电极上进行蛋白质直接电化学的研究及相关应用进行简要综述。  相似文献   

3.
蛋白质直接电化学研究在生物电化学中具有重要地位,对于蛋白质结构-功能研究、蛋白质电子传递过程的热力学和动力学研究都有着重要意义,而且是研制第三代电化学生物传感器的基础。本文对在裸电极、分子自组装修饰电极和模拟生物膜修饰电极上进行蛋白质直接电化学的研究及相关应用进行简要综述。  相似文献   

4.
蛋白质的电分析化学研究   总被引:3,自引:3,他引:0  
生命现象的许多过程皆伴随着电子传递反应,应用电化学方法研究生物体系的电子传递及其相关过程是揭示生命本质的较好途径。本文从酶生物传感器、蛋白质修饰电极和免疫传感器3个方面评述了近年来蛋白质的电分析化学研究的现状和进展,并提出了今后可能的研究方向。  相似文献   

5.
介孔分子筛上的蛋白质直接电化学   总被引:2,自引:0,他引:2  
戴志晖  鞠熀先 《物理化学学报》2004,20(10):1262-1266
将介孔分子筛用于不同含血红素蛋白质的直接电子传递研究,分别研究了辣根过氧化物酶、血红蛋白和肌红蛋白在六方介孔硅(HMS)上的直接电化学,探讨了介孔分子筛与这些蛋白质间的相互作用,构建了过氧化氢和亚硝酸根的新型的生物传感器. 这些工作扩展了HMS在蛋白质固定、直接电子传递研究和无试剂生物传感器制备方面的应用.  相似文献   

6.
蛋白质的界面吸附及其生物活性因它在构建生物传感、生物电子器件和生物燃料电池等方面具有重要的作用而倍受关注.对此,界面电场是吸附的一个重要影响因素,它能明显地影响蛋白质分子在材料界面的吸附量、分子构象以及分子定向.本文应用电化学方法和红外光谱技术研究了血红蛋白在三维多孔金膜电极上的吸附动力学及其生物活性随界面电场的变化关系.结果表明,由界面电场产生的过量表面电荷可借助与蛋白质分子之间的静电作用加速蛋白质分子在电极表面的吸附,提高其吸附量;但是,过高的界面电场将破坏吸附蛋白质的构象以及降低它还原过氧化氢的催化活性;只有在零电荷电位下,吸附在电极表面的血红蛋白才能保持其天然的构象和生物催化活性.本研究将为生物传感器、生物电子器件和生物燃料电池的构建提供理论依据,加深对荷电生物界面上生物分子界面行为的认识.  相似文献   

7.
金属蛋白质的直接电化学是研究工作者一直非常感兴趣的领域,然而由于诸多原因,在裸电极上实现直接电化学是很困难的.为了促进蛋白质和电极的电子传递,稳定而且具有优良电子传导速率和良好生物兼容性的无机材料成为此领域研究的热点.  相似文献   

8.
蛋白质是生命的基础,研究氧化还原蛋白质的直接电化学不仅对模拟生物体系电子传递机理具有重要意义,而且为传感器的构筑提供了理论基础。遗憾的是,蛋白的直接电化学在裸电极上很难实现,许多研究者通过在电极上引入表面活性剂来克服该缺点.值得思考的是为什么在表面活性剂存在下,蛋白与电极之间才能实现直接电化学?甚至促进蛋白与电极之间的电子转移速率?因此研究表面活性剂在电极表面上的形态非常必要.我们主要讨论不同乙氧基单元的表面活性剂与蛋白之间在玻碳电极上的电子转移过程.结果表明不同表面活性剂提供给蛋白不同的微环境.当表面活性剂的乙氧基链长达到最佳值时,该修饰电极能固载更多的蛋白.我们利用紫外光谱法检测蛋白在固载过程中是否变性,同时也对所构筑的修饰电极的电催化性能进行表征.  相似文献   

9.
蛋白质与电极间的直接电子交换可以为生物活体内蛋白质的电子转移机制提供模型,同时也为构筑新型的生物传感器奠定基础~([1]).层层组装技术是近年来兴起的构建蛋白质多层薄膜的方法,此技术构建生物电化学传感器主要依靠聚阳离子与生物阴离子的静电引力在电极表面形成有序的多层薄膜~([2]).周金平等将纤维素与3-氯-2-羟丙基三甲基进行反应合成了一种新型的纤维素季铵盐~([3]),它是一种聚阳离子电解质.而通过pH的调节可使血红蛋白带上不同的电核~([4]).基于血红蛋白和纤维素季铵盐之间的静电引力,通过层层组装技术将血红蛋白和纤维素季铵盐逐层固定在玻碳电极表面,形成了有序排列的多层薄膜并实现了血红蛋白的直接电化学,在此基础上制备了H_2O_2无中继体电化学传感器.  相似文献   

10.
氧化还原蛋白质电化学研究*   总被引:10,自引:0,他引:10  
刘慧宏  庞代文 《化学进展》2002,14(6):425-432
研究氧化还原蛋白质与电极之间的电子传递过程不仅为理解代谢过程提供有价值的信息,而且为制备生物传感器奠定基础。本文从蛋白质修饰电极、蛋白质在电极表面的定向固定及蛋白质人工改造三方面,评述了近年来氧化还原蛋白质电化学研究的进展,并提出了今后可能的研究方向。  相似文献   

11.
氧化还原蛋白质在工作电极上的直接电化学对于研究生命体系的电子转移机理,了解生命过程中的氧化还原机理,开发新型电化学生物传感器有着重要的意义~([1]).目前较多的工作是利用各种媒介体、促进剂和纳米材料修饰电极来实现蛋白质的直接电子转移.离子液体修饰电极(CILE)是以离子液体为修饰剂和粘合剂的一种新型化学修饰电极,在生物电分析化学已经应用.本文在CILE表面修饰纳米金用于血红蛋白的固定及其直接电化学行为的研究,取得了较好的结果.  相似文献   

12.
黎振华  诸颖  陈静  宋世平 《应用化学》2022,39(5):736-748
电化学生物传感器具有灵敏度高、便携性好、响应快速和易于集成等优点,在临床检测方面有很大应用潜力,并在可穿戴健康监测领域得到了快速发展。但在实际临床生物样本检测中,非靶标生物物质会在电极表面产生非特异性吸附(即生物污染),影响了电化学生物传感器的性能。因此,构建具有防污染能力的传感界面(抗污界面),防止非靶标物质吸附到电极表面,对于扩大电化学生物传感器的实际应用范围,实现在复杂生物样本中的检测至关重要。本文概述了物理、化学和生物抗污电极界面的构建及其在临床相关生物标志物检测中的应用,为电化学生物传感器实际应用性能的提升提供技术参考,并通过对界面抗污原理和存在问题的探讨,对抗污界面发展前景和未来趋势予以展望。  相似文献   

13.
本文综述了近年来氧化还原蛋白质电子传递与界面行为研究领域的最新进展.主要基于作者所在实验室并参考其他实验室的研究成果,总结了蛋白质与电极间的直接电子传递、蛋白质热力学和动力学性质、蛋白质的催化活性及其调节等相关领域的工作进展.近几年的研究表明,电化学技术已成为蛋白质研究的重要工具,对于氧化还原蛋白质的电子传递与界面行为的研究更是一种有效的技术手段.  相似文献   

14.
以纳米MnO2作为适体固定的构建平台,制备了一种基于核酸适体的新型腺苷电化学生物传感器.固定于电极表面的适体探针与目标腺苷杂交后使电极界面的结构发生改变,通过[Fe(CN)6]3-/4-氧化还原探针监测传感器表面电子传递电阻的变化,以此作为检测信号进行腺苷的免标记检测.表面电子传递电阻的变化值与腺苷浓度的对数在1.0×...  相似文献   

15.
碳纳米管(CNTs)因具有独特的物理化学及电化学性质,如较大的比表面积、较强的电子转移能力和良好的吸附性能等而引起人们的广泛关注.碳纳米管可以通过物理吸附、静电或疏水作用等非共价结合方式或共价连接方式固定生物大分子(如蛋白质、DNA、抗体等),有效地促进生物大分子与电极间直接、快速的电子转移,可应用于多种电化学生物传感器中.碳纳米管本身在近红外光区具有独特的荧光和拉曼光谱,可以利用多种光谱手段对多种生物分子实现定量检测,因此近年来碳纳米管在光化学生物传感器中的应用也逐渐受到了研究者的重视.本文对碳纳米管在电化学和光化学生物传感器中的应用进行了简要综述和展望.  相似文献   

16.
马心血红蛋白在氧化铟电极上的直接电子传递反应   总被引:1,自引:0,他引:1  
马心血红蛋白在氧化铟电极上的直接电子传递反应杨秀娟,菊,陆天虹(中国科学院长春应用化学研究所电分析化学开放实验室,长春,130022)关键词血红蛋白,氧化铟电极,循环伏安法蛋白质与电极之间的电子转移在某种程度上类似于生物体内蛋白质分子之间的电子转移过...  相似文献   

17.
在铟锡氧化物(ITO)导电玻璃上,通过物理气相沉积纳米氧化锌制备了Nano-ZnO/ITO,并采用浸渍法将细胞色素C(Cyt.c)直接修饰于Nano-ZnO膜上,制得了Cyt.c修饰电极(Cyt.c/Nano-ZnO/ITO/CME),构建了基于直接电子传递的过氧化氢(H2O2)生物传感器.Nano-ZnO的X射线衍射光谱表明Nano-ZnO 膜为多晶六边形纤维锌矿结构;扫描电子显微镜(SEM) 表明Nano-ZnO 膜为多孔纳米材料,微粒直径在50~100 nm,且堆积形成多孔Nano-ZnO结构;紫外可见吸收光谱的最大吸收峰为360 nm,室温禁带宽度 3.37 eV.交流阻抗、紫外可见光谱以及循环伏安法证明了吸附在Nano-ZnO上的Cyt.c保持了生物催化活性,并实现了在Nano-ZnO上的直接电子传递.H2O2生物传感器(Cyt.c/Nano-ZnO/ITO/CME)的线性范围5×10-5~5×10-3 mol/L;灵敏度7.2×10-3 A·cm-2·mol/L,检出限4×10-5mol/L; 响应时间约3 s.  相似文献   

18.
厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注.此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素.文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径.相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能.另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例.最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.  相似文献   

19.
利用物理气相沉积法制备了纳米氧化锌(Nano-ZnO) 膜, 通过扫描电子显微镜(SEM)、紫外-可见分光光度法(UV-Vis)、X 射线衍射(XRD)及电化学等方法测定了其物理化学性质. 实验结果表明, 该Nano-ZnO 膜是具有多晶六边形纤维锌矿结构的多孔纳米膜, 微粒直径在 50~100 nm, 室温禁带宽度3.37 eV. 采用浸渍法将超氧化物歧化酶(SOD)直接修饰于 Nano-ZnO 膜上, 制备了SOD 修饰电极(SOD/ZnO). 通过交流阻抗法(EIS)及循环伏安法(CV)证明了SOD能稳定地吸附在多孔ZnO膜上, 并实现了直接电子传递; 紫外-可见及红外光谱研究证明吸附在ZnO膜上的蛋白质保持了良好的生物催化活性, 并成功地构建了第三代超氧离子(O2-)生物传感器. 这种生物传感器有较宽的线性范围(氧化电流: 0.24~180×10-6 mol/L, 还原电流: 0.12~250×10-6 mol/L)、较低的检测限(氧化电流: 2×10-7 mol/L, 还原电流: 1×10-7 mol/L)、较快的响应时间(4 s)以及较好的稳定性.  相似文献   

20.
血红蛋白是脊椎动物红细胞内的呼吸蛋白,但由于其电活性中心不容易暴露以及在电极表面强烈吸附造成电极的钝化,使得它在一般固体电极上的电子传递速率很慢,得不到有效的电流响应。有关血红蛋白在固体电极上的电化学行为的研究很少。众多的分析化学家都在积极寻求加速血红蛋白电子传递速度的途径,使蛋白质直接电化学分析成为可能。最近的研究表明,某些染料修饰电极可以促进血红蛋白的电极过程,从而获得有效的电流响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号