首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The perchloroethylene coal refining process was used on North Dakota lignite coal. Effects of extraction time, perchloroethylenexoal ratio and artificial weathering were studied to determine their effects on the removal of organic sulfur. The artificial weathering conditions used were found to be too harsh and caused a decrease in the amount of organic sulfur removed, unlike normal weathering conditions. Additional studies were done involving various ligands, and showed that the addition of certain ligands during the process aided in the extraction of organic sulfur from the coal.  相似文献   

2.
Abstract

The perchloroethylene extraction process has proven to be an effective pre- combustion coal desulfurization process which offers a complete process package including wet grinding, organic sulfur removal, pyrite and mineral matter separation, solvent recovery, and byproducts and sulfur recovery. In this paper, coal weatherability was investigated for various Midwestern and Eastern U.S. coals, and its effect on organosulfur extractability by the perchloroethylene process was identified. Both “natural” and “artificial” weathering of these coals were experimentally investigated. A statistically significant difference in the extraction efficiency between fresh and weathered coals vas observed. A strong relation between the extractability and degree of weathering of the coal was established. The results provide a valuable insight into the process engineering of this process.  相似文献   

3.
The perchloroethylene extraction process has proven to be an effective pre- combustion coal desulfurization process which offers a complete process package including wet grinding, organic sulfur removal, pyrite and mineral matter separation, solvent recovery, and byproducts and sulfur recovery. In this paper, coal weatherability was investigated for various Midwestern and Eastern U.S. coals, and its effect on organosulfur extractability by the perchloroethylene process was identified. Both “natural” and “artificial” weathering of these coals were experimentally investigated. A statistically significant difference in the extraction efficiency between fresh and weathered coals vas observed. A strong relation between the extractability and degree of weathering of the coal was established. The results provide a valuable insight into the process engineering of this process.  相似文献   

4.
The perchloroethylene coal refining process utilizes perchloroethylene (PCE) as its solvent in all phases of the precombustion desulfurization process, including wet grinding, organic sulfur removal, gravitational separation of pyrites and mineral matter, and recovery of elemental sulfur (S8). The Process is capable of producing compliance coal which emits less than 1.2 lb SOX/MBTU when burnt, starting from 5 mass percent sulfur Midwestern and Eastern U.S. coals. However, the process efficiency was found to be very strongly dependent upon the degree of weathering or the level of coal oxidation. In this paper, perchloroethylene extraction data of fresh, low-sulfate coals are summarized and critically assessed. The extraction efficiency of the organic sulfur removal ranged from 5 to 30 percent for fresh coals, while that for weathered coals ranged from 30 to 60 percent. This study provides a valuable insight into the chemical reaction mechanism of perchloroethylene desulfurization process.  相似文献   

5.
ABSTRACT

The perchloroethylene coal refining process utilizes perchloroethylene (PCE) as its solvent in all phases of the precombustion desulfurization process, including wet grinding, organic sulfur removal, gravitational separation of pyrites and mineral matter, and recovery of elemental sulfur (S8). The Process is capable of producing compliance coal which emits less than 1.2?lb SOX/MBTU when burnt, starting from 5 mass percent sulfur Midwestern and Eastern U.S. coals. However, the process efficiency was found to be very strongly dependent upon the degree of weathering or the level of coal oxidation. In this paper, perchloroethylene extraction data of fresh, low-sulfate coals are summarized and critically assessed. The extraction efficiency of the organic sulfur removal ranged from 5 to 30 percent for fresh coals, while that for weathered coals ranged from 30 to 60 percent. This study provides a valuable insight into the chemical reaction mechanism of perchloroethylene desulfurization process.  相似文献   

6.
Coals from Midwestern States were extracted using two different processes, viz., a supercritical extraction process and a perchloroethylene coal refining process. The objectives of these processes are the selective removal of sulfur and nitrogen compounds from high-sulfur coals. The solvent extracts were analyzed using gas chromatography/mass spectrometry as well as wet chemical analysis. The extracted organosulfur compounds varied, depending upon the extraction process, extraction conditions, type of solvent, type of coal, and degree of weathering. The experimental results are compared among the types of coal as well as among the different processes, from viewpoints of chemical and molecular interaction.  相似文献   

7.
During the perchloroethylene extraction process, C-S bond cleavage reactions occur, which liberate labile sulfur from the organic matrix of coal into the solvent medium i.e., perchloroethylene, where it is dissolved and extracted. In this paper, the effect of impregnation of elemental sulfur in raw coal on its forms of sulfur analyses has been investigated. The effect of the same sulfur-impregnated coal on its organosulfur extractability has also been explored. Studies were conducted to observe whether the impregnated elemental sulfur was fully recoverable by the perchloroethylene extraction process. It was observed that sulfur can be very easily impregnated into the microstructure of coal. On the basis of tests on raw and impregnated coals, based on ASTM D-2492 standard, the impregnated sulfur reflects mostly in the form of organic sulfur. The impregnated sulfur which appears in the form of organic sulfur is fully recoverable via the perchloroethylene extraction  相似文献   

8.
ABSTRACT

Coals from Midwestern States were extracted using two different processes, viz., a supercritical extraction process and a perchloroethylene coal refining process. The objectives of these processes are the selective removal of sulfur and nitrogen compounds from high-sulfur coals. The solvent extracts were analyzed using gas chromatography/mass spectrometry as well as wet chemical analysis. The extracted organosulfur compounds varied, depending upon the extraction process, extraction conditions, type of solvent, type of coal, and degree of weathering. The experimental results are compared among the types of coal as well as among the different processes, from viewpoints of chemical and molecular interaction.  相似文献   

9.
ABSTRACT

During the perchloroethylene extraction process, C-S bond cleavage reactions occur, which liberate labile sulfur from the organic matrix of coal into the solvent medium i.e., perchloroethylene, where it is dissolved and extracted. In this paper, the effect of impregnation of elemental sulfur in raw coal on its forms of sulfur analyses has been investigated. The effect of the same sulfur-impregnated coal on its organosulfur extractability has also been explored. Studies were conducted to observe whether the impregnated elemental sulfur was fully recoverable by the perchloroethylene extraction process. It was observed that sulfur can be very easily impregnated into the microstructure of coal. On the basis of tests on raw and impregnated coals, based on ASTM D-2492 standard, the impregnated sulfur reflects mostly in the form of organic sulfur. The impregnated sulfur which appears in the form of organic sulfur is fully recoverable via the perchloroethylene extraction  相似文献   

10.
The perchloroethylene extraction desulfurization process removes the organic sulfur in coal via a hybrid mechanism of solvent extraction and chemical reaction. The nature and extent of the reaction is controlled by the extraction time and temperature of operation. Although the extraction temperature is kept identical for all types of coals (120°C), the organosulfur extraction time still depends upon the type of coal. If the reaction mixture is left too long in the extraction environment, the intermediate labile sulfur released by the reaction forms cross-links with the organic matter in the macromolecule of coal. This is detrimental to the process efficiency. Constant temperature has to be maintained throughout the extraction, till coal is separated from the solvent. If not, the extracted labile sulfur re-enters the coal macromolecule to form inter-penetrating polymer networks with the organic matter in coal. In this paper, it has been established that the time required for separation and isothermality of the process are crucial to maintain the reaction progressing toward sulfur and organic sulfur liberation from the macromolecule. The data presented in this paper are important from the viewpoint of process development, because the process mandates the separation of coal and solvent at the operating temperature.  相似文献   

11.
Abstract

The perchloroethylene extraction desulfurization process removes the organic sulfur in coal via a hybrid mechanism of solvent extraction and chemical reaction. The nature and extent of the reaction is controlled by the extraction time and temperature of operation. Although the extraction temperature is kept identical for all types of coals (120°C), the organosulfur extraction time still depends upon the type of coal. If the reaction mixture is left too long in the extraction environment, the intermediate labile sulfur released by the reaction forms cross-links with the organic matter in the macromolecule of coal. This is detrimental to the process efficiency. Constant temperature has to be maintained throughout the extraction, till coal is separated from the solvent. If not, the extracted labile sulfur re-enters the coal macromolecule to form inter-penetrating polymer networks with the organic matter in coal. In this paper, it has been established that the time required for separation and isothermality of the process are crucial to maintain the reaction progressing toward sulfur and organic sulfur liberation from the macromolecule. The data presented in this paper are important from the viewpoint of process development, because the process mandates the separation of coal and solvent at the operating temperature.  相似文献   

12.
Binary mixtures of acetone and water at their supercritical conditions have been investigated for their ability to remove organic sulfur from high sulfur Midwestern coals. The reduction of organic sulfur from Ohio 5/6 and Indiana 5 coals has been as high as 61% (based on a BTU basis) The experiments have been carried out following a statistical experimental design and the optimal process conditions and discerning characteristics of the process have been identified. The solvent composition and the extraction conditions can be tailored in such a way as to selectively remove sulfur and further increase the calorific value of the treated coal.  相似文献   

13.
Desulfurization of coal involves removal of both organic and inorganic forms of sulfur. In this paper, the process feasibility of organic desulfurization of coal using 1,1,1-trichloroethane (TCA) as the solvent, is established. Sulfur solubility curve in tnchloroethane was obtained. The process conditions of this novel process were critically assessed. From the solubility curve it was concluded that the process should be carried out at or near the normal boiling point of the solvent. Comparisons between the TCA extraction and the perchloroeihylene (PCE) process have been presented. Since the boiling point of tricbloroethane is quite low, the process conditions are very mild in comparision to the PCE process. It was found that the TCA process is capable of removing organosulfur from coal more selectively than the PCE process. The sulfur containing organic species in the extract obtained from  相似文献   

14.
ABSTRACT

Desulfurization of coal involves removal of both organic and inorganic forms of sulfur. In this paper, the process feasibility of organic desulfurization of coal using 1,1,1-trichloroethane (TCA) as the solvent, is established. Sulfur solubility curve in tnchloroethane was obtained. The process conditions of this novel process were critically assessed. From the solubility curve it was concluded that the process should be carried out at or near the normal boiling point of the solvent. Comparisons between the TCA extraction and the perchloroeihylene (PCE) process have been presented. Since the boiling point of tricbloroethane is quite low, the process conditions are very mild in comparision to the PCE process. It was found that the TCA process is capable of removing organosulfur from coal more selectively than the PCE process. The sulfur containing organic species in the extract obtained from  相似文献   

15.
In this paper, two high-sulfur coals were selected from Yazhou and Donglin mines of China. Inorganic sulfur was completely removed first, then the tested samples were experimented under various conditions: hydrolysis, oxidation, reduction, and supercritical extraction with methanol. The change in organic sulfur was investigated. It was found that approximately 40-60% organic sulfur in coal was released at the temperature of 350°C. The removed organic sulfur was thioalcohol and thioether, while the remaining part in coal was thiophenic sulfur.  相似文献   

16.
ABSTRACT

In this paper, two high-sulfur coals were selected from Yazhou and Donglin mines of China. Inorganic sulfur was completely removed first, then the tested samples were experimented under various conditions: hydrolysis, oxidation, reduction, and supercritical extraction with methanol. The change in organic sulfur was investigated. It was found that approximately 40-60% organic sulfur in coal was released at the temperature of 350°C. The removed organic sulfur was thioalcohol and thioether, while the remaining part in coal was thiophenic sulfur.  相似文献   

17.
The Perchloroethylene coal cleaning process effectively removes both organic and inorganic forms of sulfur in coal. Complete recyclability of the solvent is the key to both economic and environmental issues concerning the use of perchloroethylene in this process. Recyclability of the solvent has been fully established by repeated batch operation as well as FTIR structural investigations of solvent molecules. In the current investigation, the solvent has been subjected to various analyses after each stage in the operation i.e., before extraction, after extraction and after distillation. The organic desulfurization is based on an extraction-reaction mechanism and is catalyzed by the mineral matter inherently and naturally present in coal. This paper also aims at studying the role played by the solvent (perchloroethylene) in the extraction process as well as in the catalytic reaction occurring in the system. This paper also presents data on the effect of re-using 'sulfur-rich mother liquor', rich in extracted sulfur, on the organosulfur extraction efficiency. These data are very important from the point of view of process engineering and economics.  相似文献   

18.
ABSTRACT

The Perchloroethylene coal cleaning process effectively removes both organic and inorganic forms of sulfur in coal. Complete recyclability of the solvent is the key to both economic and environmental issues concerning the use of perchloroethylene in this process. Recyclability of the solvent has been fully established by repeated batch operation as well as FTIR structural investigations of solvent molecules. In the current investigation, the solvent has been subjected to various analyses after each stage in the operation i.e., before extraction, after extraction and after distillation. The organic desulfurization is based on an extraction-reaction mechanism and is catalyzed by the mineral matter inherently and naturally present in coal. This paper also aims at studying the role played by the solvent (perchloroethylene) in the extraction process as well as in the catalytic reaction occurring in the system. This paper also presents data on the effect of re-using ‘sulfur-rich mother liquor’, rich in extracted sulfur, on the organosulfur extraction efficiency. These data are very important from the point of view of process engineering and economics.  相似文献   

19.
温和条件下煤中有机硫的脱除   总被引:1,自引:0,他引:1  
在超声波辐射或热处理条件下,考察碘甲烷对煤中有机硫的脱除效果,对碘甲烷和甲醇在煤中有机硫的脱除过程中的协同作用也进行了考察。随着碘甲烷用量的增加和加热时间的延长,有机硫的脱除率也随之增加。用GC/MS对脱除下来的有机硫化合物进行了检测。  相似文献   

20.
The perchloroethylene coal cleaning process selectively removes the organic sulfur from coal via a hybrid mechanism of chemical reaction and physical solvation It was found that the chemical reaction was catalyzed by the inorganic species present in the coal. In this paper, a kinetic study was experimentally carried out to determine rate constants of the reaction. It was confirmed that the extent of organosulfur extraction depended strongly on the type of coal, and also that there is a critical extraction time which is required as the minimum time for each type of coal. Isothermal batch kinetic studies were done for various types of coal. A relation was established between the type of coal and its kinetics and hence the minimumtime for extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号