首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以十二醇为芯材,甲基丙烯酸甲酯(MMA)为壁材单体,偶氮二异丁腈为引发剂,二乙烯基苯为交联剂,十二烷基硫酸钠和十六烷为乳化体系,制备了氧化石墨烯(GO)改性十二醇/PMMA相变微胶囊。采用扫描电镜和红外光谱仪表征了它们的形貌和分子结构。尽管随着GO含量增加,导热系数提高,热稳定性增强,但是GO含量过多会影响微胶囊的形成,导致其相变焓下降。当GO占油相质量的0.1%时,微胶囊的相变焓为95.9 J/g,导热系数为0.186 9 W/(m·K)(与未加入GO的微胶囊相比增强了28%)。以10%微胶囊与苯丙乳液制成的涂层具有一定的调温性能。  相似文献   

2.
赵亮  王岩  王刚  方向晨  段晓光  王少彬 《化工进展》2022,41(5):2566-2573
采用吸附沉积法制备了以石蜡为芯材、糊化面粉为壁材的相变微胶囊,并使用红外光谱仪、扫描电子显微镜、热重分析仪和差示扫描量热仪对微胶囊的化学组成、形貌和热性能进行了研究。结果表明:相变微胶囊呈椭球形结构,粒径为400~600nm,其峰值相变温度、相变潜热值和包覆率分别为22.2℃、110.5J/g和66.7%,具有较好的化学稳定性和热稳定性。将相变微胶囊掺入石膏基体制备相变石膏建材,结果表明:相变石膏试块的力学强度随微胶囊含量的增加而下降,微胶囊以湿料方式添加有利于减少相变石膏试块力学强度的损失。在连续5个月的吸热-放热实验中,相变石膏建材未出现漏液和明显的热性能衰减;夏季午后,相变建筑模型内温较外界温度下降4.1℃,说明相变石膏建材具有一定的调控温度效果。  相似文献   

3.
石蜡微胶囊型相变储能材料制备及表征   总被引:2,自引:0,他引:2  
采用原位聚合法以30#石蜡为芯材、密胺树脂(MF)为囊材,制备了具有相变储热功能的微胶囊,并将所制得微胶囊添加到石膏板中。采用SEM、FTIR、DSC和TG等手段对微胶囊外观形貌、化学结构和热性能进行了表征,并测试了石膏板储能性能。结果表明:制得微胶囊中石蜡平均含量约为50.4%,相变温度和相变潜热分别为30℃、108.7 J/g;微胶囊表面光滑有突起,粒径在10~20μm;具有较好的外观结构和良好的热稳定性,能增强石膏板的保温性能。  相似文献   

4.
以石蜡、癸酸为芯材,脲醛树脂为壁材,间苯二酚为固化剂,采用原位聚合法制备相变微胶囊,采用ESEM、DSC、TGA来研究相变微胶囊颗粒形貌、粒径分布、热力学性能,以及相变微胶囊掺入水泥基体中的微观形貌.结果表明:微胶囊表面光滑,结构紧致;石蜡微胶囊的相变温度和相变焓分别是54.6℃和61.43 J/g,而癸酸微胶囊的相.变温度和相变焓分别是29.7℃和90.73 J/g;加入固化剂使得微胶囊产率从50%提升到78%以上;30次温度循环石蜡微胶囊相变晗无损失,癸酸微胶囊相变焓损失了31%;微胶囊在水泥基中分布均匀,形貌保存良好.  相似文献   

5.
吴京  王先锋  薛东  赵涛 《精细化工》2021,38(3):489-495
以正十八烷(n-OD)为芯材,二氧化硅(SiO2)和聚多巴胺(PDA)为复合壁材,采用界面水解缩合法成功制备光热相变微胶囊n-OD@SiO2/PDA.采用FESEM、FETEM、FTIR、DSC、TG、UV-Vis-NIR和模拟光源等对所制备了微胶囊的表面形貌、化学结构、热性能、光吸收性能和光热转换性能进行了分析和表征.在探究了不同芯材与硅源〔正硅酸四乙酯(TEOS)〕质量比对相变微胶囊储热性能影响的基础上,确定了以m(n-OD):m(TEOS)=2:1制备光热相变微胶囊.结果表明,所制备的光热相变微胶囊具有规整的表面形貌和明显的核壳结构,具有良好的耐热性能,复合壁材可以有效保护芯材.与相变微胶囊n-OD@SiO2相比,光热相变微胶囊仍具备良好的储热性能,其熔融热焓值为151.2 J/g,展现出较好的光热转换性能,其光热转换与存储效率为91.8%.  相似文献   

6.
《塑料》2017,(6)
相变材料微胶囊化较好地解决了传统单一相变材料的缺陷,但微胶囊相变材料具有较低的导热系数,导致储能系统在吸热或者放热过程中的有效热率极低,热量无法快速有效地进行储存和释放,较大地限制了相变微胶囊的应用。因此,提高相变微胶囊的导热系数成为了近年来的研究重点。主要在壁材中添加纳米材料、芯材中添加纳米材料、采用无机材料封装以及微胶囊表面金属化修饰等几个方面总结了在改善微胶囊相变材料导热性能方面的国内外研究状况。  相似文献   

7.
以硬脂酸丁酯为芯材,2,4-甲苯二异氰酸酯(TDI)和三乙醇胺(TEA)为反应单体制备壁材,采用界面聚合法制备具有储热能力的聚氨酯微胶囊相变材料,并对所制微胶囊的表面形貌、红外结构、热稳定性、相变性能和致密性进行表征分析。结果表明,所制微胶囊呈球形结构均匀分布,熔融温度(ΔT_m)和熔融热焓(ΔH_m)分别为20. 60℃和84. 09 J/g,储热性能优异。热稳定性和致密性分析表明,当TEA质量为4. 5 g、芯材完全失重时,微胶囊的质量保留率最高为52. 6%,120℃持续烘干6 h,质量损失率最低仅为21. 8%,表明所制备的微胶囊具有良好的热稳定性和致密性。  相似文献   

8.
以无机SiO2为壁材、正十八烷为芯材制备相变微胶囊(MEPCM),利用扫描电子显微镜、傅里叶变换红外光谱、粒径分析、差示扫描量热仪和热重分析仪对其结构形貌与性能进行表征。结果表明,制备的正十八烷相变微胶囊具有良好的球形外观,平均粒径为538. 2 nm;该微胶囊熔融温度和熔融热焓分别为27. 75℃和125. 1 kJ/kg,具有较高的热稳定性;采用浸轧法将MEPCM整理到纯棉织物上得到相变调温织物,并考察了浸轧整理液中微胶囊的添加量对织物性能的影响。经过增重率和DSC测试得出MEPCM最佳质量分数为20%,制备出的相变调温织物的熔融温度和熔融热焓分别为26. 50℃和15. 60 kJ/kg,具有良好的耐水洗性和透气性。  相似文献   

9.
石蜡相变微胶囊的制备及相变性能研究   总被引:1,自引:0,他引:1  
以石蜡为芯材,蜜胺树脂(MF)为壁材,采用原位聚合法制备了石蜡相变微胶囊。分别采用傅立叶变换红外光谱仪(FTIR)、差示扫描量热仪(DSC)和扫描电子显微镜(SEM)对微胶囊的结构、性能和形貌进行了分析和表征,讨论了甲醛与三聚氰胺的摩尔比对微胶囊相变性能和形貌的影响。结果表明,n(甲醛)/n(三聚氰胺)>4时,微胶囊之间发生粘结,出现了团聚现象;微胶囊的相变温度略高于芯材石蜡,随着n(甲醛)/n(三聚氰胺)增加,微胶囊的相变潜热降低。  相似文献   

10.
以正十八烷(n-OD)为芯材,二氧化硅(SiO2)和聚多巴胺(PDA)为复合壁材,采用界面水解缩合法成功制备光热相变微胶囊n-OD@SiO2/PDA。采用FESEM、FETEM、FTIR、DSC、TG、UV-Vis-NIR和模拟光源等对所制备微胶囊的表面形貌、化学结构、热性能、光吸收性能和光热转换性能进行了分析和表征。在探究了不同芯材与硅源(正硅酸四乙酯)质量比对相变微胶囊储热性能影响的基础上,确定了以m(n-OD):m(TEOS)为2:1制备光热相变微胶囊。实验结果表明,所制备的光热相变微胶囊具有规整的表面形貌和明显的核壳结构,具有良好的耐热性能,复合壁材可以有效保护芯材。与相变微胶囊n-OD@SiO2相比,光热相变微胶囊仍具备良好的储热性能,其熔融热焓值为151.2 J/g,展现出较好的光热转换性能,其光热转换与存储效率为91.8%。  相似文献   

11.
采用乳液模板自组装法通过界面缩聚制备了以棕榈酸(PA)相变材料为核、二氧化硅(SiO2)为壳的相变微胶囊,研究了不同核/壳质量比对PA/SiO2相变微胶囊的表面形貌、微观结构、相变储能性能、热稳定性和热循环性能的影响规律。结果表明:随着核/壳质量比增加,PA/SiO2相变微胶囊呈现更完整的核/壳结构和更均匀的球形外观,其最佳核/壳质量比为60:40;所形成的微胶囊的最高相变储热能力可达98.78%;研究显示,致密SiO2包覆层的形成能够有效阻止相变芯材融化后的泄露和流失,同时也提升了相变微胶囊的热稳定性能,该相变微胶囊在快速热冲击下仍保持良好的形态稳定性,并展示了良好的相变可逆性和相变耐久性,该相变微胶囊可广泛应用于工业及民用各领域的潜热储存和热管理。  相似文献   

12.
采用化学沉淀法合成以棕榈酸为芯材,二氧化硅为壁材的相变微胶囊材料,研究盐酸浓度对棕榈酸/二氧化硅相变微胶囊性能的影响.通过红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射仪(XRD)、差示量热(DSC)等手段对合成的相变微胶囊的微观形貌和相变性能进行分析表征.结果表明:棕榈酸被成功的包覆到了二氧化硅壳材中;盐酸浓度...  相似文献   

13.
以相变材料硬脂酸丁酯为芯材,异氟尔酮二异氰酸酯(IPDI)和三乙醇胺(TEA)为反应单体,采用界面聚合法制备聚氨酯网状相变微胶囊,通过涂层法将微胶囊整理到棉织物上。对相变微胶囊的表面形貌、化学结构和热稳定性进行表征,优化了整理工艺,对比了整理织物前后的表面形貌,研究了整理后织物的耐水洗性、储热性能和调温效果。结果表明,微胶囊表面光滑致密、无凹陷,制得的微胶囊壳体具有聚氨酯结构,在260℃芯材完全失重时,微胶囊的保留率为53.8%,热稳定性较好;当整理织物为3.5 g、微胶囊和粘合剂均为1.0 g时,耐水洗性较好,储热明显,调温效果优良。  相似文献   

14.
用原位聚合法制备了以58号石蜡为芯材、脲醛树脂为壁材的微胶囊。基于正交实验法得到了九组样品,并且对微胶囊产物的化学组成、相变特性、微观形貌和粒径分布进行了测试分析,考察了芯壁比、聚合反应温度、乳化搅拌转速和乳化剂添加量等因素对微胶囊制备过程及产物性能的影响。得到较佳的微胶囊产物为白色粉末,平均粒径81. 3μm,部分颗粒为球形,相变潜热约90 J/g。为得到适用于辐射余热回收的相变微胶囊,还需进一步优化制备工艺。  相似文献   

15.
乙二醇双硬脂酸酯/PMMA核壳储能微胶囊制备   总被引:1,自引:0,他引:1  
以BPO-DMA为氧化还原引发剂,在室温下悬浮聚合法制备了核壳结构的乙二醇双硬脂酸酯(EGDS)- PMMA相变材料微胶囊。采用扫描电镜(SEM)、红外光谱仪(FTIR)、差示扫描量热仪(DSC)和热重分析仪(TG)表征了核壳结构微胶囊的形貌、化学结构及热性能。结果表明,当BPO加入量为1%,DMA为0.2% 时,所得微胶囊成均匀球形,粒径分布在1~5 μm范围;微胶囊相变潜热随芯壳比的增加而增大,最大相变潜热达85.34 J/g,芯材含量达64.6%,且相变材料的热稳定性显著增强。  相似文献   

16.
石墨烯具有二维平面结构及优异的热传导性能,将其添加在相变材料中制备成复合相变材料是国内外的研究热点。本文介绍了石墨烯对相变材料热性能的影响,重点阐述了石墨烯对相变材料导热特性、储、放热特性及相变特性影响,并剖析了其传热机理。分析了石墨烯对相变材料定型性能的影响,并揭示了其影响机制。论述了石墨烯对相变材料微胶囊化的影响,并从石墨烯作为微胶囊壁材添加剂及壁材两方面进行了分析。最后指出了石墨烯复合相变材料的制备及性能研究方面存在的问题,提出未来在复合相变材料的规模化制备技术、传热机理及石墨烯与氧化石墨烯的协同强化作用机制方面需要进一步探索。  相似文献   

17.
黄志国  孙志高 《化工学报》2023,(10):4109-4128
利用相变材料的潜热储能,是解决可再生能源不连续问题的有效途径之一。以钛酸四丁酯(TBT)为前体,采用界面水解-缩聚法制备了纳米相变微胶囊。纳米相变微胶囊的热导率提高到原材料的215%,约为0.43 W/(m·K),相变温度为42.4℃,相变潜热达到234.7 J/g,纳米相变微胶囊强化了相变材料的传热性能蓄热,适用于太阳能热水系统。建立了三维计算模型,利用Fluent软件对填充床进行了数值模拟,研究了顺排结构(SS)和叉排结构(CS)填充床的蓄/放热性能。分析了两种结构化填充床在不同流速下,液相率、温度场和蓄/放热功率的变化情况。结果表明,随着流速的增大,SS和CS的熔化/凝固速率均加快。在相同流速下,CS比SS熔化/凝固更快。SS和CS在不同的阶段升温速率不同,与SS相比,CS的温度变化更加均匀。在较低流速(2 L/min)下,SS和CS蓄/放热持续时间较长,变化较小。在不同的流速(2、4和6 L/min)下,CS的峰值蓄热功率是SS的1.7倍~1.9倍,峰值放热功率是SS的1.8倍~2.0倍。  相似文献   

18.
摘 要:以石蜡为芯材,蜜胺树脂(MF)为壁材,采用原位聚合法制备了石蜡相变微胶囊。采用傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、激光粒度分析仪和差示扫描量热仪(DSC)对微胶囊的性能和形貌进行了分析和表征,讨论了甲醛与三聚氰胺的摩尔比(F/M)对微胶囊性能和形貌的影响。实验结果表明,F/M摩尔比大于4时,微胶囊之间发生粘结,出现了团聚现象;微胶囊的相变温度略高于芯材石蜡,随着F/M摩尔比增加,微胶囊的相变潜热降低。  相似文献   

19.
纳米SiO2改性石蜡相变微胶囊涂料的制备及性能表征   总被引:1,自引:0,他引:1  
相变微胶囊在能源节约方面可以起到重要作用.以石蜡为芯材,三聚氰胺树脂为壳材,并使用纳米SiO2作为改性剂,采用原位聚合法制备相变微胶囊.研究了纳米SiO2用量对微胶囊性能的影响.通过差示扫描量热仪(DSC)、扫描电子显微镜(SEM)以及同步热分析仪(TGA)等对相变微胶囊的相变特性、表面形貌、热稳定性以及包裹率等进行了...  相似文献   

20.
以熔点29.45℃的复配石蜡为芯材,硬脂酸、司盘-80和OP-10按一定比例混合后为乳化剂,三聚氰胺-尿素-甲醛树脂为壁材,采用原位聚合法,制备了碳纳米管/复配石蜡相变微胶囊。研究不同乳化剂对乳液及碳纳米管分散的影响,并用扫描电镜、差示扫描量热仪对石蜡和微胶囊进行了表征。结果表明,当添加10%的微晶蜡时,复配石蜡的熔点增大0.73℃,吸热过程相变潜热增加30%;当硬脂酸、司盘80和OP-10的比例为1∶2∶2时,乳液稳定性和碳纳米管分散性达到最佳,复合乳化剂添加量为芯材质量的5%时,形成的微胶囊形貌良好;碳纳米管的加入,有利于胶囊的成型,能够提高微胶囊的相变潜热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号