首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李丽  陈志平  张以晨  焦雯淼 《安全》2021,42(6):61-68
为保障突出矿井近距离煤层群安全开采,本文基于上保护层开采时下邻近煤层卸压瓦斯治理的重要性,探讨采场动压影响下围岩变化与卸压瓦斯解吸运移的时空关系,研究瓦斯涌出形态和控制措施.结果表明:煤层组开采上保护层时,伴随工作面推进,底板煤岩系表现出时空滞后的蠕变特性;邻近层卸压瓦斯涌出按其对应工作面位置的活跃程度呈现出"四带"特征;被保护层卸压涌出占总瓦斯涌出量的70%以上,直接对被保护层进行目标抽采瓦斯是实现卸压瓦斯抽采最大化的最佳途径;在使用底板瓦斯道施工穿层钻孔抽采被保护层卸压瓦斯时,根据巷道顶板瓦斯层流情况,确定全负压通风并保持风速1.1m/s以上是保障安全作业环境优化条件.  相似文献   

2.
随着中厚煤层资源的枯竭,近距离薄煤层群开采成为我国资源的重要补充。煤层群开采时合理的采掘部署是防止工作面瓦斯集中涌出的关键,本文通过分析近距离煤层群开采时各回采顺序下工作面瓦斯涌出量,建立了以工作面瓦斯涌出量预测为基础的近距离煤层群开采优化模型,利用计算机编程实现了模型的可视化操作。该模型通过对比分析全部种回采顺序方案,选择整个回采期间瓦斯涌出量最均衡的方案为最优方案。对翔升煤矿进行了实例分析,结果显示合理的回采方案可以使工作面最大瓦斯涌出量大大减小,使整个回采期间工作面瓦斯涌出量趋于均衡。为煤层群开采优化技术中的瓦斯环节提供了理论依据。  相似文献   

3.
为实现保护层开采工作面生产过程中瓦斯不超限,在分析工作面瓦斯来源的基础上,提出了保护层开采工作面竖向分层治理瓦斯的思路。根据相似模拟结果,分析了采空区瓦斯流动范围和流动范围内孔隙率、风阻分布特征。采用数值模拟分析了Y型通风、Y型通风+采空区埋管及Y型通风+采空区埋管+高抽巷+高位钻场3种瓦斯治理方式下采空区瓦斯体积分数场,结果表明:采空区瓦斯体积分数在竖直方向和水平方向均具有典型的递变特征,距工作面越远,距煤层越高,瓦斯体积分数越大;合适位置的煤层顶板高抽巷对抽采来自上邻近层的瓦斯具有较好的效果,试验条件下高抽巷抽采瓦斯量达到了总量的36.4%~63.6%;沿充填墙的采空区埋管不能完全拦截下层采空区进入沿空巷的采空区瓦斯,随沿空巷长度增加,瓦斯体积分数增大,建议沿空巷长度控制在250 m范围内。  相似文献   

4.
为确定煤层群下保护层开采上部被保护煤层的保护范围,结合金佳矿一采煤工作面保护层顶底板煤岩层的物理力学参数和地质特征,采用FLAC3D软件模拟下保护层开采中被保护层的应力场及变形场的变化过程,得出保护层的保护效果;并根据保护层开采的应力卸压保护准则和变形保护准则,确定保护层沿倾向和走向的保护范围。结果表明,由于岩性及岩层结构的影响,通过数值模拟确定的各被保护层的保护范围与按照卸压角确定的保护范围有一定差异;分别用现场考察与数值模拟这2种方法所确定的下保护层保护范围基本一致。  相似文献   

5.
为研究近距离薄煤层群上保护层开采期间邻近层卸压瓦斯对回采工作面瓦斯涌出的影响,进而有效杜绝保护层开采过程中工作面瓦斯积聚或超限等事故,结合煤岩体破碎前“应力-裂隙-渗透率”间关系,建立卸压瓦斯三维渗流模型。采用Flac3D软件,以新维煤矿煤层条件为工程背景,研究保护层开采过程采场渗透率沿纵向分布规律,确立下保护层C3煤层处于三维增渗区、C7与C8号煤层处于水平增渗区。基于此,提出“近场定向钻孔全覆盖抽采与远场穿层钻孔层间卸压抽采结合”的瓦斯治理技术模式,并开展现场试验,结果表明:试验工作面回风瓦斯浓度降低44.4%,绝对瓦斯涌出量降低52.3%,该模式可显著提高卸压瓦斯的治理效果,为类似工况下的保护层开采提出1种新的瓦斯抽采模式,具有一定的指导及借鉴意义。  相似文献   

6.
为了解决三交河煤矿2-512大采高工作面上隅角瓦斯经常超限的难题,运用理论和现场实践进行了分析,分析得出工作面上隅角瓦斯超限的主要原因有:①上隅角是风流汇合处;②顶板跨落;③2#下煤层瓦斯涌入采空区;④地质构造.针对上隅角瓦斯超限问题,提出了高位钻孔抽放裂隙带瓦斯和低位钻孔抽放采空区和冒落带瓦斯的防治措施.现场实践表明,在实施上述措施之后,2-512工作面回风流中瓦斯浓度控制在0.02% ~0.06%,上隅瓦斯浓度由原来的0.8%~3.0%下降到0.8%以下,有效地解决了上隅角瓦斯超限问题,保证了矿井的安全高效生产.  相似文献   

7.
近距离上保护层开采最小安全岩柱厚度研究   总被引:3,自引:2,他引:1  
运用岩石力学知识和数值模拟方法,分析近距离保护层矩形掘进巷道周边的应力分布规律以及巷道塑性区范围的确定方法,并结合平煤集团五矿的保护层开采条件,利用FLAC数值计算程序对该矿近距离上保护层掘进期间不同岩柱厚度条件下的保护层底板塑性破坏范围进行数值模拟,在此基础上,提出合理确定保护层底板安全岩柱厚度的方法,现场观测结果表明,理论计算与数值模拟结果比较吻合,符合生产实际。  相似文献   

8.
依据平顶山矿区某矿的丁、戊组煤层(间距90m)的地质条件,采用实验室试验、数值模拟和现场试验相结合的方式,对远距离下保护层开采煤层渗透特征及瓦斯抽采技术展开探讨。运用自制的煤-气耦合系统进行了大尺寸煤样的加载试验,试验将煤样加载及裂隙发展分原生微孔隙压密阶段、煤样的弹性变形阶段、膨胀破坏阶段和峰后的破坏阶段四阶段,卸载后煤样孔隙不闭合,渗透系数仍能保持高位运行;并对现场丁组煤的卸压区域进行参数测试,卸压效果明显,煤层透气性系数增加720~1550倍,卸压范围内的煤层煤与瓦斯突出危险性消除;根据对被保护层裂隙场形成分析,提出了煤与瓦斯共采中卸压瓦斯抽采钻孔抽采最佳时机,实现了戊组煤开采与丁组煤瓦斯抽采在时间、空间上的有序配合。  相似文献   

9.
为揭示浅埋深近距离煤层群开采过程中地表裂隙发育对上覆采空区遗煤自燃的影响规律及影响范围,以苏家沟煤矿为研究背景,建立采空区流场流动及低温氧化的数学模型和三维几何模型。采用FLUENT模拟软件模拟了下煤层工作面推进过程中上覆采空区的氧气分布情况,得到了浅埋近距离煤层上覆采空区基于裂隙动态发育的氧气场和风流场的分布规律。依据采空区自燃危险区域判定理论,对上部煤层采空区内的自然发火危险区域进行预测。结果表明:连通地表与采空区的裂隙数量随工作面的推进而增加,上覆采空区氧化升温区域主要集中在滞后工作面0~20 m范围内,采空区深部的氧化带分布在新、老裂隙附近,在进风侧靠近地表且在回风侧靠近裂隙底端;当工作面推进120 m,即产生3条贯通型裂缝时,采空区自燃危险性最大,结合风流场云图确定上煤层底板自燃危险区距工作面水平距离为97.5 m,是煤矿开采过程中的重点防护区域。  相似文献   

10.
为获得近距离煤层群叠加开采条件下采动应力与覆岩位移场的演化特征,以潘二矿近距离煤层6,7煤层地质条件为背景,采用相似模拟与工程实践相结合的方法进行了研究。结果表明:近距离煤层群叠加开采形成的覆岩宏观运移形态和特征与单一煤层开采相似,叠加开采时,覆岩呈多岩层整体协调运移的规律,具有位移叠加增长效应;7煤层的开采使覆岩起到一定的垫层作用,缓和了矿山压力,使近距离煤层叠加开采时具有应力减弱效应;与开采7煤层相比,6煤层开采过程中,周期来压步距减小,来压时支架载荷减弱,动压系数相应减小,但周期来压时,存在部分岩层发生台阶式下沉的现象。基于近距离煤层群叠加开采研究结果,在近距离煤层群开采的设备选型时,选用了高额定工作阻力的液压支架,在周期来压期间,采取了一定的辅助措施,同时加强了组织管理,生产中没有发生冲击液压支架及其他动力灾害的现象。  相似文献   

11.
为解决下邻近煤层群卸压瓦斯造成工作面上隅角超限严重以及支架间和采空区底部瓦斯不能及时被抽离等问题,基于近距离下邻近高瓦斯煤层群采动卸压瓦斯涌出规律,提出内错式迎向斜切钻孔辅助顶板高抽巷抽采采空区瓦斯技术。利用顶板垮落与钻孔形态演变规律,实现钻孔依次辅抽上隅角、支架间和采空区底部等富集区瓦斯,并在高家庄煤矿2号煤层2203回采工作面试验考察。结果表明:与高抽巷单一抽采效果相比,内错式迎向斜切钻孔辅助抽采条件下的叠加抽采平均瓦斯体积分数达15. 1%、提升1. 3倍,平均抽采纯量达18. 61 m3/min、提升1. 9倍,叠加抽采率达50%,抽采量占邻近层和采空区瓦斯涌出总量的83%,回风流和上隅角瓦斯体积分数控制在0. 6%以下,可有效保障工作面的顺利回采。  相似文献   

12.
下保护层开采卸压瓦斯治理技术研究   总被引:4,自引:0,他引:4  
以潘一东矿1252(1)下保护层首采工作面为研究对象,采用分源预测法对下保护层工作面瓦斯涌出情况进行预测。计算结果表明,1252(1)工作面的瓦斯有六成左右来自上邻近13—1煤层,在本煤层回采期间提出了地面钻井、底抽巷穿层钻孔、高位钻场顶板走向钻孔、沿空留巷充填墙埋管等瓦斯治理方案,抽采率达到90%左右,工作面上隅角完全杜绝瓦斯浓度超限现象,保护范围内的13—1煤层的突出危险性也显著降低。  相似文献   

13.
为获得近距离煤层群叠加开采条件下采动应力与覆岩位移场的演化特征,以潘二矿近距离煤层6,7煤层地质条件为背景,采用相似模拟与工程实践相结合的方法进行了研究。结果表明:近距离煤层群叠加开采形成的覆岩宏观运移形态和特征与单一煤层开采相似,叠加开采时,覆岩呈多岩层整体协调运移的规律,具有位移叠加增长效应;7煤层的开采使覆岩起到一定的垫层作用,缓和了矿山压力,使近距离煤层叠加开采时具有应力减弱效应;与开采7煤层相比,6煤层开采过程中,周期来压步距减小,来压时支架载荷减弱,动压系数相应减小,但周期来压时,存在部分岩层发生台阶式下沉的现象。基于近距离煤层群叠加开采研究结果,在近距离煤层群开采的设备选型时,选用了高额定工作阻力的液压支架,在周期来压期间,采取了一定的辅助措施,同时加强了组织管理,生产中没有发生冲击液压支架及其他动力灾害的现象。  相似文献   

14.
为深入研究深部近距离煤层上行开采过程中岩层应力分布、断裂破坏及下沉变形特征,根据深部煤层开采的具体工程地质条件,建立了深部近距离煤层上行开采相似材料试验模型,对上行开采中围岩应力变化、覆岩运动及裂隙演化过程进行了模拟分析。获得了下煤层和上煤层开采过程中,围岩应力分布变化特点及分区特征、岩层裂隙富集区主要分布区域及其演化规律,煤层开采过程中切眼和煤壁附近岩层断裂角的变化特征,并得到了两煤层工作面相对位置不同情况下,岩层裂隙富集区演化特点、断裂角变化及下沉变形规律。研究成果为类似条件下煤层上行开采、瓦斯抽采提供参考。  相似文献   

15.
王洪磊    王登科      姚邦华   《中国安全生产科学技术》2016,12(4):20-24
气体流动可分为连续流、滑流、过渡流、自由分子流,为研究不同流动机制下的煤层瓦斯流动规律,在充分考虑了不同扩散机制和滑移边界条件后,建立了适用于不同流动机制的煤层瓦斯流动方程,深入分析了视渗透率和达西渗透率的比值随Knudsen数的变化关系。研究结果表明:所提出的煤层瓦斯流动方程能准确描述包括达西流、滑流、自由分子流、过渡流在内的气体流动行为。瓦斯气体在煤层孔隙、裂隙中流动过程中浓度扩散和粘性流同时存在,当Kn<0.01时,粘性流起主导作用,瓦斯流动满足渗流方程;当Kn>10时,浓度扩散起主导作用,瓦斯流动符合扩散方程;在Kn的其他范围内,煤层孔隙裂隙中瓦斯流动以滑流、过渡流为主,在对之进行评价时应同时考虑扩散项和渗流项。研究结果可为揭示煤层瓦斯流动机理、提高煤层瓦斯抽采率和煤层气的产量预测准确度提供新方法和新途径。  相似文献   

16.
为解决近距离煤层上行开采上煤层出现台阶状下沉问题,以西曲煤矿南三盘区近距离煤层群为研究背景,结合其煤层地质条件,采用理论计算对南三盘区近距离煤层群上行开采进行可行性判定,并建立数值和相似模拟模型,模拟留煤柱和错层位巷道布置开采,对上行开采煤层垮落形式和卸压效果进行试验分析。试验结果表明:煤层上行开采过程会导致上层煤位于垮落带内;采用留煤柱巷道布置上煤层出现台阶状下沉现象,错层位巷道布置上煤层连续下沉不会出现台阶状下沉;错层位巷道布置上行开采,上煤层卸压效果良好,无应力集中现象。研究结论可为类似条件上行开采和岩层控制提供参考。  相似文献   

17.
为了研究地层条件下瓦斯流动特点,通过建立瓦斯吸附-解吸、扩散和渗流综合流动数学模型,分析不同埋深条件下瓦斯流动机制,并模拟吸附层和滑脱效应对瓦斯流动的影响。结果表明:随煤层埋深增加,部分纳米孔隙内瓦斯流动机制由扩散过渡到渗流,这有利于瓦斯运移;在煤层深部,瓦斯吸附层和滑脱效应对瓦斯渗流作用影响不大;随埋深增加,瓦斯吸附层对瓦斯运移影响逐步增大,而滑脱效应则逐步弱化;在埋深相同时,两者对瓦斯运移的影响都随孔隙直径增大而减小。研究有助于深入了解瓦斯在深部煤层流动的机制,提高深部煤层瓦斯抽采效果。  相似文献   

18.
为了研究远距离被保护层被保护区域预抽瓦斯效果,为其他区域同一保护层和被保护层开采提供依据和借鉴。基于保护层开采、煤与瓦斯突出防治等理论,首先对保护层开采防止煤与瓦斯突出机理进行研究,接下来计算了保护层开采保护范围,继而从瓦斯抽采量、抽采率和煤层顶底板相对变形量等方面对采用的地面钻孔和底板巷向上穿层钻孔等瓦斯抽采技术预抽被保护区域瓦斯效果进行了研究。结果表明:开采保护层有效减少或消除被保护层煤与瓦斯突出危险性,煤层瓦斯预抽率远大于30%,被保护层的最大膨胀变形远大于3‰。  相似文献   

19.
郑煤集团公司位于河南豫西产煤区,地质条件特殊,属于“三软”煤层(顶板软、底板软、煤层软)且煤层瓦斯含量高。近年来,随着开采深度的增加,多数主力矿井由低瓦斯升级为高突瓦斯矿井,郑煤集团饱受矿井瓦斯灾害威胁,1996年以来共发生大小瓦斯突出达64次。2004年10月20日,在21岩石下山掘进工作面发生特大瓦斯爆炸事故,造成148人死亡。  相似文献   

20.
针对深井高瓦斯低透气性突出煤层群消突和首采层开采卸压瓦斯治理难题,以谢桥煤矿11426工作面开采为例,设计首采中间层无煤柱开采、实现上下突出煤层均消突的技术方案,研究了Y型通风工作面采空区瓦斯及风压分布规律,结合煤层群开采巷道布置条件,提出并实施留巷侧井下暗立眼回风阶段留巷Y型通风技术,强化留巷墙体封闭和留巷采空侧回风立眼封闭等卸压瓦斯抽采技术,实现了深井煤层群首采层工作面的安全高效回采和邻近突出煤层的全面消突。11426工作面回采期间,绝对瓦斯涌出量最大47.67 m3/min,工作面瓦斯抽采率高达65%以上,研究成果为今后类似深井煤层群开采的卸压瓦斯抽采和治理提供技术指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号