首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (1 ? y)La1?xSmx(Mg0.5Sn0.5)O3yCa0.8Sm0.4/3TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the La1?xSmx(Mg0.5Sn0.5)O3 ceramics revealed that La1?xSmx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little La2Sn2O7 as the second phase. An apparent density of 6.59 g/cm3, a dielectric constant (?r) of 19.9, a quality factor (Q × f) of 70,200 GHz, and a temperature coefficient of resonant frequency (τf) of ?77 ppm/°C were obtained when the La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics were sintered at 1500 °C for 4 h. The temperature coefficient of resonant frequency (τf) increased from ?77 to +6 ppm/°C as y increased from 0 to 0.6 when the (1 ? y)La0.97Sm0.03(Mg0.5Sn0.5)O3yCa0.8Sm0.4/3TiO3 ceramics were sintered at 1500 °C for 4 h. 0.425La0.97Sm0.03(Mg0.5Sn0.5)O3–0.575Ca0.8Sm0.4/3TiO3 ceramic that was sintered at 1500 °C for 4 h had a τf of ?3 ppm/ °C.  相似文献   

2.
This paper describes the effects of Zn substitution for Mg on the microwave dielectric properties of (Mg3  xZnx)(VO4)2 ceramics. As for the XRPD patterns of (Mg3  xZnx)(VO4)2 ceramics sintered at the sintering temperature of 750 °C, no secondary phase was detected over the whole composition range. However, in the case of the sample sintered at 850 °C, the Zn4V2O9 and Zn2V2O7 compounds were identified by using XRPD; this result was attributed to the decomposition of Zn3(VO4)2 phase. From crystal structure analysis, it was found that the atomic distances of M(1)O (M = Mg and Zn) and M(2)O in MO6 octahedra increased, though that of VO in VO4 tetrahedron decreased. Moreover, the slight tilting of M(2)O6 octahedron was observed by the Zn substitution. As for the covalency of cation–oxygen bond, the covalency of MO bond in M(1)O6 and M(2)O6 octahedra decreased because of the increase in the atomic distance of MO, whereas that of VO increased with increasing the Zn addition. However, as a result, the slight decrease in the covalency of cation–oxygen bond was recognized because the variation in the covalency of MO bond is predominant in this crystal structure. The dielectric constants of the samples range from 4.4 to 11.1. The decrease in the covalency may be related to the difference in the dielectric constant of each composition. The maximum Q · f value of bulk densities is effected by varying the chemical composition of (Mg3  xZnx)(VO4)2 ceramics and it shifts toward lower sintering temperature with an increase in x within the temperature region of 800–1050 °C. The temperature coefficient of resonant frequency (τf) of the samples decreased with increasing of Zn, and then a variation in τf value was attributed to the tilting of M(2)O6 octahedron caused by Zn substitution for Mg.  相似文献   

3.
BaLi1+xF3+x (x = 0–0.01) were successfully mechanosynthesized by a simple ball-milling process. The effects of excessive LiF and sintering method and/or annealing atmosphere on its sintering behavior, microstructure, and microwave dielectric properties have been investigated in this paper. The mechanosynthesized powder can be densified with relative densities of ∼95 % after sintering at 750–800 °C/2 h in N2. The obtained ceramics exhibit excellent optimized microwave dielectric properties with εr of ∼11.46 ± 0.06, Q×f values of 83175 ± 1839 GHz and τf of ∼ − 70 ± 3 ppm/°C at the x = 0.006 composition. Its Q×f value could be improved to 94603 ± 2037 GHz) by post-annealing in N2 after post annealing at 700 °C/2 h. The Q×f value could be further improved to (120,098 ± 2344 GHz) by hot-pressed sintering (HPS). Sintering in the ambient atmosphere or O2 leads to lower Q×f values than those of the counterparts sintered in N2 due to the introduction of F-vacancies by oxidation, while little variation in εr andτf.  相似文献   

4.
Novel LiAl5−xZnxO8−0.5x microwave dielectric ceramics were synthesized through a solid-state reaction route. Phase evolution of LiAl5−xZnxO8−0.5x was determined by XRD analysis. The XRD results indicated that the phase compositions had a P4332 space group when 0 ≤ x ≤ 0.2 and a spinel structure when 0.3 ≤ x ≤ 0.5. The dielectric constant (εr) of this series’ solid solutions decreased with the increase in Zn doping content, which was in good agreement with the Clausius-Mossotti relation. Oxygen vacancy and the decreased degree of order degraded the quality factor (Q × f) of the two structures. The deterioration in quality factor was further verified by impedance spectroscopy. The temperature coefficient of the resonant frequency (τf) decreased with the increase in x and was correlated with the unit cell volume. Finally, CaTiO3 was used as a compensation material to obtain a near-zero τf of the LiAl5O8 ceramic.  相似文献   

5.
The structural evolution and microwave dielectric properties of (1 ? x)Li2TiO3 + xMgO system (0  x  0.5) have been investigated in this paper. The ordering degree decreased with the increase of MgO content. The microcracks and cleavage on (0 0 1) due to the weak Li–O bonds disappeared with the increase of MgO content. The dielectric constant and temperature coefficient of resonant frequency decreased with the increase of MgO content. The Q × f value increased with x up to x = 0.2 and then decreases with the further increase of x. An excellent combined microwave dielectric properties could be obtained when x = 0.24, ?r = 19.2, Q × f = 106,226 GHz and τf = 3.56 ppm/°C.  相似文献   

6.
La[Al1−x(Mg0.5Ti0.5)x]O3 (LAMT, x = 0-0.2) ceramics were synthesized by the conventional solid-state reaction method and formed a solid solution. The pure solid solutions were recorded by X-ray diffraction (XRD) in every range. Relative permittivity (εr) and structural stability were greatly affected because the Al3+ site was replaced by [Mg0.5Ti0.5]3+. The total ionic polarizability gradually increased with x, and εr gradually increased. The trend of τf is due to the change in structural stability. The variation in Q × f value increased firstly and then decreased due to the change in the symmetric stretching mode of Al/MgTi–O. The optimum microwave dielectric properties of LAMT were obtained at x of 0.1 after sintering at 1650°C for 5 hours, and εr = 24.9, Q × f = 79 956 GHz, and τf = −33 ppm/°C. The CaTiO3 have a large positive τf (+800 ppm/°C), thus, the τf achieved near zero when CaTiO3 and LAMT (x = 0.1) ceramics were mixed with a certain molar mass, and the optimum microwave dielectric properties of 0.65CaTiO3–0.35LaAl0.9(Mg0.5Ti0.5)0.1O3 were as follows: εr = 44.6, Q × f = 32 057 GHz, and τf = +2 ppm/°C.  相似文献   

7.
(1 ? x)Ca0.6La0.267TiO3xCa(Mg1/3Nb2/3)O3 ceramics were prepared by a conventional solid-state ceramic route. The microstructure and microwave dielectric properties were investigated as a function of composition and sintering temperature. As the content of Ca(Mg1/3Nb2/3)O3 increased, the temperature coefficient of resonant frequency (τf) value decreased gradually. By appropriately adjusting the x value in the present ceramic system, a near-zero τf value could be achieved. The appropriate increase of sintering temperature could significantly improve Q·f value by influencing the grain growth. The optimal microwave dielectric properties with a dielectric constant (?r) of 52.4, Q·f of 36,428 GHz (at 5.8 GHz), and τf of 3.4 ppm/°C were obtained for the specimen 0.5Ca0.6La0.267TiO3–0.5Ca(Mg1/3Nb2/3)O3 sintered at 1490 °C for 4 h.  相似文献   

8.
Sr2[Ti1−x(Al0.5Nb0.5)x]O4 (x = 0, 0.10, 0.25, 0.30, 0.5) ceramics were synthesized by a standard solid-state reaction process. Sr2[Ti1−x(Al0.5Nb0.5)x]O4 solid solutions with tetragonal Ruddlesdon-Popper (R-P) structure in space group I4/mmm were obtained within x ≤ 0.50, and only minor amount (1-2 wt%) of Sr3Ti2O7 secondary phase was detected for the compositions x ≥ 0.25. The temperature coefficient of resonant frequency τf of Sr2[Ti1−x(Al0.5Nb0.5)x]O4 ceramics was significantly improved from 132 to 14 ppm/°C correlated with the increase in degree of covalency (%) with increasing x. The dielectric constant ɛr decreased linearly with increasing x, while high Qf value was maintained though it decreased firstly. The variation tendency of Qf value was dependent on the trend of packing fraction combined with the microstructure. Good combination of microwave dielectric properties was achieved for x = 0.50: ɛr = 25.1, Qf = 77 580 GHz, τf = 14 ppm/°C. The present ceramics could be expected as new candidates of ultra-high Q microwave dielectric materials without noble element such as Ta.  相似文献   

9.
MgTiO3–CaTiO3 composite is one of the most important commercial microwave dielectric ceramics. However, the significant nonlinear change in resonant frequency with temperature and the temperature dependence of its temperature coefficient of resonant frequency (τf) severely deteriorate the temperature stability of MgTiO3–CaTiO3 composite. In this study, the Ca2+ in CaTiO3 was partially substituted with Sm3+ to prepare a series of (1 − y)MgTiO3yCa1−xSm2x/3TiO3 (x = 0.2–0.5) composites that was subsequently characterized. With increasing x from 0 to 0.5, the y value for obtaining the near-zero average τf between 20 and 80°C increases from 0.07 to 0.23; the dielectric constant of the composite correspondingly increases from 21.5 to 27.1, whereas the Qf value first increases and then decreases. Notably, (1 − y)MgTiO3yCa1−xSm2x/3TiO3 composites with greatly improved temperature stability are realized, and the nonlinearity of the change in resonant frequency with temperature and the rate of change of τf with temperature are reduced by 48%–73%, relative to those of 0.93MgTiO3–0.07CaTiO3 composite. These results are attributed to the significantly reduced temperature dependence of τf for the constituent phase of Ca1−xSm2x/3TiO3. This study sheds light on the development of temperature-stable microwave dielectric composites featuring constituent phases with τf of opposite signs.  相似文献   

10.
Microwave dielectric properties of MgTi1−x(A1/3Sb2/3)xO3 (A = Mg2+, Zn2+, 0 ≤  0.125) ceramics were investigated as a function of the electronegativity difference (X) between (A1/3Sb2/3)4+ ions (A = Mg2+, Zn2+) and O2− ion. A single phase with an ilmenite structure was detected for the specimens sintered at 1450°C for 4 hours in the entire range of compositions. With the substitution of (A1/3Sb2/3)4+ ions (A = Mg2+, Zn2+) at Ti4+-sites of MgTiO3, the quality-factor (Qf) values of the specimens increased up to = 0.05 mol, and then decreased with the further substitution owing to the electronegativity difference (X) between the (A1/3Sb2/3)4+ ions (A = Mg2+, Zn2+) and Ti4+ ion. The specimens with (Mg1/3Sb2/3)4+ ions exhibited higher Qf values than those with (Zn1/3Sb2/3)4+ ions. These results could be attributed to the smaller electronegativity of (Mg1/3Sb2/3)4+ (1.80) than that of (Zn1/3Sb2/3)4+ (1.92). The dependences of the microwave dielectric properties on the structural characteristics of the MgTi1−x (A1/3Sb2/3)xO3 ceramics were also discussed.  相似文献   

11.
《Ceramics International》2022,48(6):7951-7962
Ceramic samples of barium ferrostannate BaFe1/2Sn1/2O3-δ have been prepared by the sol-gel and hydrothermal synthesis methods. To reduce the number of oxygen vacancies, annealing in oxygen has been performed. The heat capacity, magnetization, Mössbauer and dielectric spectroscopy data point to the appearance of antiferromagnetic ordering below ~55 K followed by further spin glass magnetic ordering below 15 K. The giant dielectric response seems to be due to the relaxation of electrons trapped by oxygen vacancies. Comparison of the Fe K-edge X-ray absorption spectra of BaFe1/2Sn1/2O3-δ confirmed substantial difference from those of the similar stoichiometric BaFe1/2Nb1/2O3 perovskite.  相似文献   

12.
Novel temperature stable MgMoO4–TiO2 microwave dielectric ceramics were prepared by a solid state reaction process at low temperature (950 °C). As TiO2 content increases, the relative permittivity increases while the Q × f value decreases, and the variation mechanisms are proposed, respectively. The temperature coefficient of resonant frequency (τf) shifts to the positive direction as TiO2 is added. The mixture mechanisms of τf value for two-phase composite materials are supposed. A near-zero τf value (3.2 ppm/°C) is obtained when x = 0.3, with εr = 9.13 ± 0.03 and Q × f = 11,990 GHz. The 0.7MgMoO4–0.3TiO2 composites are considered to be appropriate as a low temperature co-fired ceramic material for microwave wireless communication applications.  相似文献   

13.
Structure and microwave dielectric properties were studied in the (1−x)La(Mg1/2Ti1/2)O3–xLa2/3TiO3 system. Ceramics with this composition in the 0⩽x⩽0.5 range were processed from powders obtained by a citrate-based chemical route. Structure of these perovskite solid solutions changed from orthorhombic for x=0.1 and 0.3 to pseudocubic for x=0.5. Microwave and radio frequency measurements revealed increase in permittivity and temperature coefficient of the resonant frequency τf with increasing of La2/3TiO3 content. Close to zero τf value was found near to x=0.5 composition of (1−x)La(Mg1/2Ti1/2)O3x La2/3TiO3.  相似文献   

14.
Li2Ti1?x(Zn1/3Nb2/3)xO3 (0≤x≤0.5) ceramics were prepared by a solid state ceramic route, and the phase purity, microstructure, and microwave dielectric properties were investigated. The XRD results suggest the formation of solid solutions for all studied compositions (0≤x≤5). The dielectric properties are strongly dependent on the compositions, the densifications and the microstructures of the samples. The Q×f value increases with x up to x=0.2 and then decreases with the further increase of x. The best microwave dielectric properties of εr=20.5, Q×f =75,257 GHz, and τf =15.4 ppm/°C could be obtained when x=0.2.  相似文献   

15.
《Ceramics International》2016,42(13):15035-15040
The effect of crystal structure on the microwave dielectric properties of Mg2Ti1−x(Mg1/3Sb2/3)xO4 (0.025≤x≤0.15) ceramics was investigated. A single phase having a cubic inverse spinel structure formed over the entire range of compositions, in specimens sintered at 1450 °C for 4 h. The structural characteristics of these ceramics were quantitatively evaluated by applying the Rietveld refinement method to the X-ray diffraction data. The largest bond strength between the cation and the oxygen ion and hence the highest quality factor (Qf) of the specimens were obtained at x=0.05. Although the ionic polarizability (3.29 Å3) of (Mg1/3Sb2/3)4+ was larger than that (2.93 Å3) of Ti4+, the dielectric constant (K) of the specimens decreased owing to the decrease of rattling effect with increasing x. In addition, the temperature coefficient of resonant frequency (TCF) decreased with decreasing K values. Typically, a high Qf value of 229,000 GHz was obtained for the specimens with x=0.05.  相似文献   

16.
The products and microwave dielectric properties of ceramics with nominal composition (Ba0.9Ca0.1)(YxB1/2)O(3x+4.5)/2 (B′=Nb5+, Ta5+) are investigated. When x=0.5, i.e. (Ba0.9Ca0.1)(Y1/2B1/2)O3 (B′=Nb5+, Ta5+), the product contains a considerable amount of Y2O3 as well as the main perovskite phase. When x=0.3 the product is single phase, equivalent to Ba(Ca1/9Y3/9Nb5/9)O3 or Ba(Ca1/9Y3/9Ta5/9)O3. The lattice parameters of these new compounds are smaller than those of Ba(Y1/2Nb1/2)O3 and Ba(Y1/2Ta1/2)O3. The relative permittivities (εr) of these new compounds are larger than those of Ba(Y1/2B1/2)O3 (B′=Nb5+, Ta5+). The increase in εr of the Nb-system is about 4 times larger than that of the Ta-system. The Q f values of the present ceramics are larger than the Ca-containing perovskite in the (Ba1−xCax)(Mg1/3Ta2/3)O3 system. The sharp increase of εr in this study cannot be explained by the Ca2+ rattling ion model at the A-site, which applies to the case of the (Ba1−xCax)(Mg1/3Ta2/3)O3 system. A new method to explain the increase in εr is discussed.  相似文献   

17.
This study elucidates the microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5?xTix)O3 ceramics with a view to their potential for microwave devices. The Nd(Mg0.5Sn0.5?xTix)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics revealed no significant variation of phase with sintering temperatures. A dielectric constant (?r) of 21.1, a quality factor (Q × f) of 50,000 GHz, and a temperature coefficient of resonant frequency (τf) of ?60 ppm/°C were obtained for Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

18.
The structure stability of double perovskite ceramics – Ba2Mg1?xCaxWO6 (0.0  x  0.15) has been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small amount of Ca substitution for Mg increases the Mg/CaO bond strength, and hence the stability of the double perovskite. But it cannot completely suppress the decomposition of Ba2Mg1?xCaxWO6 at high temperature. Although space group Fm?3m is adopted for all compositions, nonrandom distribution of Ca2+ and Mg2+ on 4b-site within the short range scale is observed due to their large cation size difference. Small level doping of Ca (x  0.1) increases the dielectric permittivity monotonically, but does not affect the Q × f value greatly. As expected, the substitution of Ca tuned the temperature coefficient of resonant frequency (τf value) from negative to positive value. Excellent combined microwave dielectric properties with ?r = 20.8, Q × f = 120,729 GHz, and τf = 0 ppm/°C could be obtained for x = 0.1 composition. However the Q × f value degrades considerably when the sample was stored under ambient conditions for a long time.  相似文献   

19.
Ba0.5Sr0.5TiO3–Mg2(Ti0.95Sn0.05)O4 composite ceramics have been synthesized by the solid-state reaction. Phase structure, microstructure and microwave dielectric properties have been systematically characterized. The permittivity is tailored to a certain extent with the addition of Mg2(Ti0.95Sn0.05)O4. Both X-ray diffraction (XRD) and back electric image (BEI) analysis show the co-existence of two-phase structures of ABO3 perovskite and A2BO4 spinel structure. A high dielectric tunablity can be obtained and a high Q value can be achieved at microwave frequency. The composition 30 wt.%Ba0.5Sr0.5TiO3–70 wt.%Mg2(Ti0.95Sn0.05)O4 exhibits good dielectric properties with ? of 79, Q of 152 (at 2.997 GHz) and T of 15.8% (30 kV/cm & 10 kHz) at room temperature, which make it a promising candidate for tunable microwave device applications in the wireless communication system.  相似文献   

20.
The Li2Mg1?xZnxTi3O8 (x = 0–1) and Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) ceramics are synthesized by solid-state ceramic route and the microwave dielectric properties are investigated. The Li2MgTi3O8 ceramic shows ?r = 27.2, Qu × f = 42,000 GHz, and τf = (+)3.2 ppm/°C and Li2ZnTi3O8 has ?r = 25.6, Qu × f = 72,000 GHz, and τf = (?)11.2 ppm/°C respectively when sintered at 1075 °C/4 h. The Li2Mg0.9Zn0.1Ti3O8 dielectric ceramic composition shows the best dielectric properties with ?r = 27, Qu × f = 62,000 GHz, and τf = (+)1.1 ppm/°C. The effect of Ca substitution on the structure, microstructure and microwave dielectric properties of Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) has also been investigated. The materials reported in this paper are excellent in terms of dielectric properties and cost of production compared to commercially available high Q dielectric resonators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号