首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 82 毫秒
1.
2.
3.
 对青海海北地区高山草甸主要植物群落小嵩草(Kobresia pygmaea)草甸、矮嵩草(K.humilis)草甸、藏嵩草(K.tibetica)沼泽化草甸地上生物量动态和能量分配的研究结果表明,不同植物群落年地上净生产量及其年际动态和主要植物类群生物量季节动态具明显的差异,其生物量季节动态可由如下模型表示: Wi=Ki/(1+exp(Ai-Bit)) 植物群落地上、地下生物量的垂直分布呈典型的金字塔和倒金字塔模式。小嵩草草甸、矮嵩草草甸和藏嵩草沼泽化草甸的地上净生产量依次为368.4g·m-2·a-1、418.5g·m-2·a-1和518.4g·m-2·a-1,所固定的太阳能值依次为6655.16kJ·m-2·a-1、7610.09kJ·m-2·a-1、9488.77kJ·m-2·a-1。光能利用率分别为0.1097%、0.1256%、0.1568%。  相似文献   

4.
对青海海北地区高山草甸主要植物群落小嵩草草甸,矮嵩草草甸,藏嵩草沼经草甸地下生物量动态和能量分配的研究结果表明,不同植物群落年地上净生产量及其年示动态和主要植物类群生物量季节动态具有明显的差异,其生物量季节动态可由如下模型表示:Wi=Ki(1+exp(Ai-Bit)植物群落地上,地下生物量的垂直分布呈典型的金字塔和倒金字塔模式。  相似文献   

5.
高寒小嵩草草原化草甸植物群落结构特征及其生物量   总被引:39,自引:2,他引:37       下载免费PDF全文
 小嵩草(Kobresia pygmaea)草原化草甸的主要植物有35种,隶属11科,30属。小嵩草为优势种,次优势种有异针茅(Stipa alliena)、美丽风毛菊(Saussurea superba)、紫羊茅(Festuca rubra)等;生活型以地面芽植物为主(65.71%),其次为地下芽植物(34.29%);地上、地下部分生物量垂直分布呈典型的金字塔模式。地上、地下生物量主要分布在0—10cm冠层和土层中,分别占地上、地下总生物量的91.79%和90.43%。每个植物类群生物量季节变化可由Logostic模型表示:Wi=ki/[1+exp(Ai-Bit)] 枯枝落叶生物量变化呈“V”型曲线。 在生长季各类群生物量绝对增长速率具明显的差异,平均每天每平方米可生产干物质2.79g,年地上净生产量为368.4g/m2。所固定太阳能值为6655.16kJ/m2,其中莎草类占35.10%,禾草类占23.33%,杂类草占34.15%,枯枝落叶占7.42%。光能利用率为0.1097%。  相似文献   

6.
科尔沁沙地盐生草甸主要植物群落种群格局的研究   总被引:18,自引:2,他引:18  
本文采用方差/均值法,Greig-Smith格局分析法及Hill格局分析法,探讨了科尔沁沙地盐生草甸主要植物群落种群格局及其成因。结果表明,羊草群落和野古草群落中的大部分种为聚集分布,羊草与野古草群落交错区中所有种为聚集分布,其最小面积为0.01m~2,最大面积为6.4×6.4m~2。邻接格子最小取样面积应小于0.05×0.05m~2,最适取样面积为40.96m~2,小规模格局是种子扩散和营养繁殖的结果,中规模起因于匍匐和长根茎的扩散,大规模则取决于土壤总盐分及pH值。  相似文献   

7.
青海祁连山地区兽类分布格局及动物地理学分析   总被引:1,自引:3,他引:1  
夏霖  杨奇森  相雨  冯祚建 《兽类学报》2003,23(4):295-303
根据2001~2002 年对青海祁连山及周边地区的考察, 结合历史资料对青海祁连山及临近地区的兽类分布格局及动物地理分布等问题进行了探讨。通过兽类分布信息对该地区进行聚类, 用物种分布的相似性聚类结果分析该地区兽类区系特点。结果表明: 湟水河谷兽类区系特殊; 祁连山中部与青海湖北岸山地的区系成分近似;祁连山西部与其它区域区系差异明显; 柴达木盆地东部与祁连山中部相近, 而与柴达木盆地中、西部相区别。本地区的兽类分布格局与植被关系密切, 充分体现出青藏高原和黄土高原过渡的特点。本区特有种类比较缺乏,在不同生境交错带具有各种成分混杂和相互渗透的现象, 既包含了东部黄土高原和东南湿润地区的区系成分,又不乏典型的青藏高原种类, 同时还与蒙新区有一定的联系。从而体现出祁连山地区在兽类物种多样性及其动物地理方面的边缘效应作用。  相似文献   

8.
对青海海北地区高山草甸主要植物群落小嵩草(Kobresiapygmaea)草甸、矮嵩草(K.humilis)草甸、藏嵩草(K.tibetica)沼泽化草甸地上生物量动态和能量分配的研究结果表明,不同植物群落年地上净生产量及其年际动态和主要植物类群生物量季节动态具明显的差异,其生物量季节动态可由如下模型表示:Wi=Ki/(1+exp(Ai-Bit))植物群落地上、地下生物量的垂直分布呈典型的金字塔和倒金字塔模式。小嵩草草甸、矮嵩草草甸和藏嵩草沼泽化草甸的地上净生产量依次为368.4gm-2a-1、418.5gm-2a-1和518.4gm-2a-1,所固定的太阳能值依次为6655.16kJm-2a-1、7610.09kJm-2a-1、9488.77kJm-2a-1。光能利用率分别为0.1097%、0.1256%、0.1568%。  相似文献   

9.
筑坝扩容下高原湿地拉市海植物群落分布格局及其变化   总被引:1,自引:0,他引:1  
肖德荣  袁华  田昆  杨杨 《生态学报》2012,32(3):815-822
基于遥感与地理信息系统技术、结合实地调查与验证,对高原湿地拉市海筑坝扩容13a来湿地植物群落类型、物种组成、空间分布格局进行研究,对比分析筑坝扩容前后植物群落变化特征。结果表明,拉市海当前分布有水葱 (Scirpus tabernaemontani)、两栖蓼 (Polygonum amphibium) 等2个挺水植物群落,鸭子草 (Potamogeton tepperi)、菱 (Trapa bispinosa)等2个浮叶植物群落,穗状狐尾藻 (Myriophyllum spicatum)、篦齿眼子菜 (Potamogeton pectinatus)、菹草 (Potamogeton crispus)、穿叶眼子草 (Potamogeton perfoliatus)、小叶眼子菜 (Potamogeton pusillns)等5个沉水植物群落,草甸植被分布于湖周。湿地植物物种共计61种,隶属于25科、48属,物种丰富度随沉水→浮叶→挺水→草甸逐渐增加。沉水植物群落分布面积最大(615.08 hm2),其次是草甸(214.60 hm2)、浮叶植物群落(140.01 hm2),挺水植物群落分布面积最小 (9.34 hm2),群落垂直层次随沉水→浮叶→挺水呈复杂化的趋势。筑坝13a来,拉市海植物群落类型从单一的沉水型植物群落发展成为由沉水、浮叶、挺水型组成的、水平空间多样化配置的湿地植被系统,其中穗状狐尾藻、篦齿眼子菜、小眼子菜等植物群落在筑坝蓄水13a后没有发生演替得以保留,而扇叶水毛茛(Butrachium bungei)、马来眼子菜(Potamogeton malaianus)和轮藻(Chara spp.)群落发生演替而消失。研究掌握了筑坝扩容下拉市海湿地植物群落分布格局及其变化特征,为科学评估筑坝蓄水对湿地生态系统的影响提供了基础性数据,同时也为水文改变下高原湿地生态系统的保护、管理以及资源可持续利用提供了一定的理论依据。  相似文献   

10.
为研究广西北部湾茅尾海自然保护区海岛红树林群落的空间点格局和演替规律,在典型红树林海岛设置调查样地,以样地内的桐花树(Aegiceras corniculatum)、秋茄(Kandelia obovata)、白骨壤(Avicennia marina)等红树植物为研究对象,构建单变量函数的完全空间随机模型、异质泊松模型与双变量函数的环形转变模型,分析3种红树林种群的结构特征、空间格局及种内种间关联性。结果发现:(1)桐花树种群的小树和中树的个体数目较多,种群年龄结构呈金字塔型,种群处于增长状态;秋茄种群的中树个体数目较多,种群结构呈钟型,种群数量处于稳定状态;白骨壤个体数相对较少,且幼树较少老树较多,种群更新受阻,种群结构呈纺锤型,属于衰退型种群。(2)红树林群落整体上呈现出空间集聚的分布特征,从不同种群的集聚程度来看:桐花树>白骨壤>秋茄。(3)随着空间尺度的增大,红树林群落在空间分布上依次表现出聚集、随机和均匀3种特征。(4)桐花树与秋茄、白骨壤的种间关系随着尺度增加均表现为空间无关联性-空间负关联性-空间无关联性的演变特征,秋茄与白骨壤的种间关系则为全尺度的空间无关联性。(5)桐花树种内不同龄级之间存在空间正关联性、空间无关联性和空间负关联性,秋茄种内不同龄级之间均表现出空间无联性,白骨壤种群则在不同龄级之间均出现空间正关联性。(6)红树植物种群的空间格局受到自身繁殖特性、生境异质性、种内和种间竞争、病虫害等多种因素的影响。红树林人工种植和恢复需要结合沿海地区的自然生态条件,按照红树林种群的适应形态学特点、群落类型和自然演替规律,种植乡土红树植物,适当引进外来物种,研制出近似天然的人工红树林林分结构,提高群落的生物多样性和群落稳定性,发挥红树林湿地生态系统的生态环境效应。  相似文献   

11.
青海高寒草甸土壤放线菌区系研究   总被引:9,自引:1,他引:9  
2001~2002年从海北高寒草甸生态系统采集土样,用不同方法从中分离放线菌300余株,根据其形态和分类特征,分别归入小单孢菌属(Micromonospora)、诺卡氏菌属(Nocardia)、糖多孢菌属(Saccharopolyspora)、原小单孢菌属(Promicromonospora)和链霉菌属(Streptomyces),并将链霉菌归入7个类群。同时对230株中温菌和110株低温菌的部分酶活性及其对真菌和细菌的拮抗性进行了测定,发现链霉菌不仅具有许多酶活性,而且对真菌和细菌有拮抗性。  相似文献   

12.
The seasonal dynamics and grazing responsiveness of modular populations of Kobresia humilis were studied at the fourth year (1991) of grazing under different stock intensities and after resting for 1 year (1993) in alpine meadow. The results showed that the number of tillers and leaves per ramet of modular populations of Kobresia humilis increased and the time for which the number of cumulative surviving leaves reaching its maximum was delayed with the increase of stock intensity. The seasonal dynamics of tiller, flowering tiller and total cumulative leave of the populations displayed similar variations with the change of grazing intensities. Two peaks of growth rate of tiller population were observed at the middle and last ten days of May and at the last ten days of August respectively. The peak of death rate of tiller population was at the end of season of growth. The cycle of initiation and death of leaf was nearly synchronous with that of tiller. The greatest risk of leaf death was also in concert with the highest rate birth. The pattern of survival curves was of the “Deevey type Ⅰ” for tiller populations and of the “stepwise” type for leaf populations respectively. And different stock intensities had no effect on the patterns of survival curves, however, their im-pacts on the differences in the number of tiller and leaf populations of Kobresia humilis remained 1 year after stop grazing.  相似文献   

13.
为分析甘南高寒草甸植物功能群多样性及其物种多度分布对退化的响应,探讨其多样性的形成与维持机制,采用样地调查法收集数据,并使用物种多度模型对其进行拟合分析。结果表明:随着退化程度的加深,植被优势种以禾草科和莎草科植物为主,逐渐变为杂草功能群植物为主,杂草功能群在群落多样性分布中起着主导作用;全部物种多度分布随着退化程度的加深发生变化,其中,无退化草甸的最优拟合模型是VOLKOV,轻度退化草甸的最优拟合模型是GEO,中度退化草甸和重度退化草甸的最优拟合模型为BRO,资源分配模式由随机分配转向固定分配的分配模式;禾草功能群的最优拟合模型以生态位模型为主,资源分配方式由固定分配和随机分配共同主导,豆科功能群的最优拟合模型是BRO,资源分配方式以固定分配为主,杂草功能群的最优拟合模型从中性模型向生态位模型转变,与全部物种多度分布的最优模型基本一致,且资源分配由随机分配向固定分配转变,可以认为杂草功能群是影响群落物种多度分布的主要原因,但是禾草和豆科功能群的贡献也不可忽视。  相似文献   

14.
通过对海北高寒草甸生态系统研究站25个科、70个属、102种植物叶片的稳定性碳同位素的测定,以确定植物群落的光合型.结果表明,所测定的102种植物的稳定性碳同位素比值(δ13C)介于-28.24‰和-24.84‰之间,说明这102种植物均属于C3植物,无C4植物或CAM植物.植物这种光合型的分布与该生态系统中的环境因子密切相关,是低温、强辐射等环境因素长期作用的结果,也反映了植物对这种特殊环境的适应.  相似文献   

15.
作为胚胎发育的屏障,卵壳特征如卵壳厚度和气孔密度具有重要的生态学意义。本文研究了高寒草甸繁殖的7种代表性雀形目鸟类角百灵(Eremophila alpestris)、小云雀(Alauda gulgula)、黄头鹡鸰(Motacilla citreola)、树麻雀(Passer montanus)、粉红胸鹨(Anthus roseatus)、黄嘴朱顶雀(Carduelis flavirostris)、赭红尾鸲(Phoenicurus ochruros)的卵与卵壳特征,以探索在高寒缺氧环境下,不同科鸟类的适应性调节。结果发现,7种鸟类中,除小云雀和角百灵之外,其他鸟类的卵与卵壳特征均有显著的种间差异(除卵壳厚度和气孔直径之外);对7种鸟类卵壳厚度、气孔密度、卵体积、卵重之间的线性拟合显示,卵壳厚度、卵体积与气孔密度均无显著相关性(卵壳厚度:P = 0.11,卵体积:P = 0.09),卵重、卵体积与卵壳厚度呈显著正相关(卵重:r2 = 0.46,P < 0.001;卵体积:r2 = 0.44,P < 0.001);对7种鸟类卵的数据与繁殖期雌鸟平均体重的线性拟合结果显示:平均卵重、卵壳厚度的差异与雌鸟体重成正相关(卵重:r2 = 0.66,P = 0.03;卵壳厚度:r2 = 0.92,P < 0.01);对6种鸟类(缺乏粉红胸鹨窝卵数数据)卵的数据与孵卵相关变量的线性拟合结果显示:卵壳厚度及气孔率与窝卵数成负相关(卵壳厚度:r2 = 0.64,P = 0.056;气孔率:r2 = 0.87,P < 0.01),6种鸟类(缺乏树麻雀巢杯指数数据)气孔率与巢杯指数或巢型无显著相关性(巢杯指数:P = 0.49,巢型:P = 0.435)。卵表面积和总气孔数解释了大部分气孔率差异(87%),卵重和气孔率与孵卵期无显著相关(P = 0.77),气孔率显著低于预期气孔率(P<0.001)。这些结果表明,种间的遗传性(如成鸟的形态、窝卵数等)决定了大部分卵与卵壳特性的差异,但是为适应高寒低氧的气候特征,不同种的鸟都具有相对厚的卵壳和低的气孔率特征,说明环境因素同样影响卵的进化。另外,单纯的卵特性(卵体积和气孔率)并不能决定孵卵期的长短,亲鸟的孵卵行为同样具有重要的影响,角百灵虽然离巢频率相对较高,但是孵卵期却相对较短,这可能与其较高的气孔率有关。  相似文献   

16.
本研究以空间替代时间的方法,在青海三江源国家级自然保护区,以每隔200 m-300 m的海拔差异,从海拔3220 m(S1)到4790 m(S6)共设立6个海拔梯度的高寒草甸土壤样地为研究对象,利用Biolog生态板法研究了不同海拔土壤微生物碳源利用功能多样性分布特征,试图分析海拔变化对多样性分布特征的影响及其响应。结果表明,随着海拔的升高,微生物群落碳源利用功能多样性指数整体呈现先下降后上升的趋势,与AWCD变化趋势一致;DCA分析显示不同海拔土壤微生物对碳源代谢结构有一定的空间差异;不同海拔梯度的土壤微生物对6类碳源的利用程度存在差异,其中多聚化合物为优势碳源;从CCA和Partial mantel分析得知,土壤微生物群落的碳源利用功能多样性的海拔分布格局与海拔高度、全磷含量、有效磷含量呈显著相关关系,而与植物多样性没有相关性。了解不同海拔下土壤微生物对碳源利用强度,可为揭示三江源的微生物过程提供基础数据。  相似文献   

17.
相似性似说通过物种构成的相似性来解释物种丧失是如何影响生物量的变异性的,但还没有得到检验。本研究通过设置在青藏高原东部地区的高寒草甸植物群落中的74个永久样方.采集3年(1999~2001)植物生长高峰期的群落数据,试图检验物种构成的相似性是如何解释物种多样性对地上生物量年际变异性的影响。结果表明:随着物种丰富度增加,生物量变异性降低;而随着均匀度的增加,生物量的变异性尽管在均匀度中等程度时似乎保持在同一水平,但总体上呈下降趋势;物种构成上的相似性解释了地上生物量变异性的大部分,而且随着物种构成上的相似性的增加,生物量的变异性降低;物种丰富度和均匀度均与物种构成上的相似性没有显著相关关系。这些结果表明:尽管生物多样性的丧失可能不必导致物种丰富群落中物种构成上的相似性,但相似性与地上生物量的变异性的因果联系可能是稳健的.由于本研究是在自然群落中进行的,对物种构成的相似性没有进行直接控制,因此,要深入理解相似性是如何影响生物多样性对生态系统功能变异性的效应的机制,可能还需要直接对物种构成的相似性进行控制的实验研究。  相似文献   

18.
  1. Despite its recent successful and well-documented reintroduction history, a comprehensive and current update of the distribution and status of the Alpine ibex Capra ibex is lacking. As some concerns persist about its conservation, a status update appears essential for future conservation and management strategies on a large scale.
  2. We provide an exhaustive update of the geographic range of the species, alongside estimates of its current abundance and population trends from 2004 to 2015.
  3. We gathered census and distribution data for all the Alpine ibex colonies from management authorities and research groups that monitor them in different countries, and from the literature and publicly available reports. We produced a distribution map, reported the number of individuals observed in the most recent censuses, and estimated global, national, and local population trends using Bayesian hierarchical models.
  4. Our model estimated that there were a total of 55297 Alpine ibex in the Alps in 2015 (lower 95% credible interval [CrI]: 51157; upper 95% CrI: 62710). The total number of individuals appears to have increased slightly over the last 10 years from the 47000-51000 estimated in previous reports. Positive population trends were observed in Switzerland and Italy, while no trend was apparent in France. For Austria, Germany, and Slovenia, there were insufficient data to estimate a trend. The slopes of the colonies’ trends were positively correlated with the year of colony foundation.
  5. The geographic range of the Alpine ibex does not seem to have increased in size in recent years, although the accuracy of the spatial data varies among countries.
  6. The periodic and standardised collection of census data for all colonies and a common policy of data sharing at a European level appear essential for monitoring the global trend of this species and for planning balanced conservation and management actions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号