首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
作为一种清洁的可再生能源产品,乙醇可用于制造乙醛、丙烯、正丁醇、1,3-丁二烯和芳香烃等高值化学品.对于大多数的乙醇催化转化过程,第一步是乙醇脱氢生成乙醛,因而该反应具有重要的研究意义和应用价值.铜基催化剂因在乙醇脱氢反应中具有高活性和高选择性,受到广泛关注与研究.然而,由于催化剂上铜配位结构较为复杂,价态多变,催化剂的关键活性位点目前仍难以确定.此外,铜的Tamman温度较低,在反应条件下因铜活性位容易烧结或团聚而导致催化剂失活,因此需要进一步提升铜催化剂的稳定性.构筑具有明确结构和高稳定性的铜基催化剂是获得高性能乙醇脱氢反应的关键,也是深入认识该反应中催化剂结构与性能构效关系的前提.本文首先采用蒸氨法制备了一系列的Cu-MFI催化剂,再通过酸处理将催化剂上不稳定的CuOx物种除去,留下与MFI载体强相互作用的Cu物种.通过优选Cu负载量和优化反应条件,发现在250°C和WHSV=0.64 h-1的反应条件,在最佳催化剂5%Cu-MFI-de Cu上实现了95%的乙醛选择性和约87%的乙醇转化率,且可稳定运行120 h.系统表征(氢气程序升...  相似文献   

2.
与乙醇相比,高级醇具有高的十六烷值、高能量密度、对发动机部件无腐蚀性、与水不混溶、稳定性好等直接作为燃料或燃料添加剂的优势,将发酵产生的生物乙醇转化为更有价值的高级醇受到了广泛关注。本工作综述了近年来世界各国有关生物乙醇制高级醇的研究进展,包括金属氧化物、羟基磷灰石(HAP)和负载型金属催化剂的研究开发现状,并比较了不同类型催化剂参与下的乙醇转化率和高级醇选择性,结合乙醇经缩合反应制备高级醇的机理进行了讨论,最后对当前生物乙醇制高级醇的挑战以及未来研究趋势进行了总结与展望,指出多功能催化剂的开发是未来研究重点,羟醛缩合是进一步提高生物乙醇制高级醇转化率与选择性的有效策略。  相似文献   

3.
相较于Wacker工艺进行乙醛工业化生产,发展多相催化体系实现乙醇直接无氧催化脱氢制乙醛和副产氢气,从生产工艺和经济价值方面无疑是一条更加安全高效的路线.在此,我们发展了一种高效、稳固的Cu/SiO2催化剂,用于乙醇的无受体催化脱氢.通过氨蒸发法制备得到高度分散的Cu颗粒,在没有任何平衡气体的纯乙醇进料条件下,显示出超强的热稳定性.活性组分Cu和载体SiO2之间的强相互作用,使其具有优异的催化性能.通过反应条件优化,在250℃下实现了较高的乙醇转化率(>40%)和乙醛选择性(>95%),且催化剂在固定床连续反应过程中可稳定运行超过400 h.  相似文献   

4.
生物柴油是一种环境友好的燃料,随着其生产及应用的快速增长,其生产过程中重要的副产物甘油将会大量过剩.因此,将甘油转化为高附加值的化学品对于提高生物柴油整体竞争力具有重大意义.乳酸是重要的化工原料,可用于制备生物兼容和可降解的聚乳酸塑料,广泛应用于食品和医药等领域.近年来,由甘油制乳酸的研究受到格外关注,相对于水热反应和氢解反应等,催化选择氧化反应因温和的反应条件而更具竞争力.目前,甘油催化选择氧化制乳酸一般需加入较高比例的NaOH,而碱的类型对反应性能的影响鲜有报道.另外,催化剂常采用TiO_2和CeO_2等氧化物载体,而炭载体具有比表面积较大、在酸碱溶液中稳定及贵金属易于回收等优点,在催化领域有着广泛应用.因此,本文研究了活性炭(AC)担载的Pt催化剂在甘油催化选择氧化制乳酸反应中的催化性能.首先研究了Pt/AC催化剂和碱在甘油催化选择氧化制乳酸过程中的催化作用.实验发现,Pt/AC和碱协同作用才能得到乳酸.Pt/AC催化剂在甘油脱氢生成中间产物(甘油醛和二羟基丙酮)的过程中起主导作用,碱的存在能够促进甘油羟基脱氢;中间产物实验证实,中间产物生成乳酸过程中碱起主导作用,它促进甘油醛和二羟基丙酮脱水反应和坎尼扎罗重排反应获得乳酸.进一步研究发现,中间产物二羟基丙酮比甘油醛更有利于乳酸生成,而Pt/AC催化剂有利于中间产物氧化为甘油酸.进一步研究了不同类型的碱对反应性能的影响.结果表明,碱金属氢氧化物(LiOH,NaOH,KOH)比碱土金属氢氧化物(Ba(OH)_2)更有利于提高甘油转化率和乳酸选择性.在加入碱金属氢氧化物条件下,甘油转化率与其离子半径呈正相关,而乳酸选择性则呈相反趋势.在LiOH存在下,乳酸选择性明显高于NaOH和KOH条件.当LiOH:甘油摩尔比为1.5时,甘油转化率和乳酸选择性均最高.在较低的LiOH与甘油摩尔比时,随着反应的消耗,溶液中的OH–减少,其促进甘油脱氢的作用变弱,并且不利于中间产物进行坎尼扎罗反应,故反应活性和乳酸选择性较差;而当LiOH比例过高时,会导致溶解氧浓度迅速降低,从而使甘油转化率和乳酸选择性下降,同时副产物甘油酸的选择性有所提高.这可能是因为较高比例的碱会促进中间产物甘油醛生成,该中间产物在Pt/AC催化作用下发生进一步氧化反应生成甘油酸.研究了反应时间对催化性能的影响.结果表明,反应6 h后,甘油已经完全转化,乳酸选择性最高,达到69.3%;进一步延长反应时间,乳酸选择性有所下降,而副产物乙酸选择性略有增加,这可能是部分乳酸分解所致.Pt/AC催化剂经5次循环使用后仍保持了较高的甘油转化率和乳酸选择性  相似文献   

5.
研究了在三种固体超强酸催化下醛(酮)自身的羟醛缩合反应,系统考察了反应时间,催化剂用量等因素对反应的影响,优化了反应条件.同时,对该反应的溶剂效应进行了研究.结果表明,当催化剂用量为2 g/1 mol醛(酮),反应5 h,转化率可达40%,溶剂对该反应有明显的抑制作用.超强酸对各种醛都具有较好的催化活性,其催化醛类化合物自身缩合的转化率都在48%以上,选择性在95%以上,证明固体超强酸对该缩合反应有较好的催化活性和选择性.  相似文献   

6.
生物乙醇作为平台分子通过催化转化的方法可以制备烯烃、乙醛、丁醇和芳香化学品等,其中乙醛是生产乙酸、季戊四醇、三氯乙醛、山梨酸等重要化学品的原料.随着乙醛的需求量逐年增加,发展以乙醇直接脱氢生成乙醛的工艺,具有联产氢气、原子经济性高、产物易分离的优点,符合国际绿色低碳发展战略要求,有望替代当前乙烯氧化法生产工艺.乙醇分子...  相似文献   

7.
选用纤维二糖作为探针分子,探索纤维素催化转化制备乙二醇过程的反应路径.分别考察了纤维二糖和葡萄糖在双组分催化剂H2WO4和Ru/C下的催化反应活性.结果表明,乙二醇不仅来自于纤维二糖水解产物葡萄糖的逆羟醛缩合作用,同时也可以来自于纤维二糖的直接逆羟醛缩合过程.而且,纤维二糖的直接逆羟醛缩合作用对糖苷键的水解也有一定的促进作用.比较发现,钨基催化剂作用下纤维二糖的逆羟醛缩合反应活性比葡萄糖要低,因此乙醇醛可以缓慢产生并在Ru/C催化剂上迅速加氢生成乙二醇.使得以纤维二糖作为原料比以葡萄糖作为原料时获得更高的乙二醇收率.  相似文献   

8.
氧化硅负载的固体碱上乙醛的气相缩合反应   总被引:1,自引:0,他引:1  
在氧化硅负载的含碱金属固体碱催化剂上乙醛能有效地缩合生成丁烯醛及丁烯醇,反应具有中等转化率、较好的选择性(约90%)和稳定性.考察了不同反应条件对催化性能的影响,并对可能的反应活性相进行了探讨.  相似文献   

9.
采用"机械混合-焙烧"方法制备了负载型固体碱催化剂MgO/NaY,研究了糠醛与丙酮在水-乙醇体系中的羟醛缩合反应,考察了催化剂负载量、原料配比、反应温度、反应时间等因素对催化剂性能的影响。结果表明,20%MgO/NaY催化剂表现出最佳的催化性能,在85℃条件下反应8 h后,糠醛转化率达到99.6%,亚糠基丙酮(FA)和二亚糠基丙酮(F2A)选择性分别达到42.2%和57.1%,缩合产物的总收率为98.6%。高温促进反应中间体向产物的转化,有利于提高产物的总选择性。改变糠醛/丙酮的摩尔比可调控两种缩合产物的选择性,较高的糠醛/丙酮摩尔比有利于提高F2A的选择性,但会降低整体反应速率。重复性评价表明,催化剂具有较好的再生性能。  相似文献   

10.
选用纤维二糖作为探针分子,探索纤维素催化转化制备乙二醇过程的反应路径.分别考察了纤维二糖和葡萄糖在双组分催化剂H2WO4和Ru/C下的催化反应活性.结果表明,乙二醇不仅来自于纤维二糖水解产物葡萄糖的逆羟醛缩合作用,同时也可以来自于纤维二糖的直接逆羟醛缩合过程.而且,纤维二糖的直接逆羟醛缩合作用对糖苷键的水解也有一定的促进作用.比较发现,钨基催化剂作用下纤维二糖的逆羟醛缩合反应活性比葡萄糖要低,因此乙醇醛可以缓慢产生并在Ru/C催化剂上迅速加氢生成乙二醇.使得以纤维二糖作为原料比以葡萄糖作为原料时获得更高的乙二醇收率.  相似文献   

11.
Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.  相似文献   

12.

The heat of combustion (HOC) of butanol/gasoline and butanol/diesel fuel blends was systematically determined in a Parr 6725/6772 heat-loss compensated semi-microcalorimeter under controlled temperature and pressure conditions. A set of blends containing 15 and 30% of butanol, in mass fraction, was tested, and the results were compared to those obtained for pure ethanol, pure gasoline, pure diesel, and Brazilian commercial gasoline. In view of the high volatility of samples, the use of gelatin capsules was necessary to avoid evaporation losses during the critical step of sampling. Results evidenced that despite a slight energy reduction observed for all blends, HOC values remained quite close to those measured for gasoline and diesel, even when considering blends with 30% of butanol in mass fraction, which reduction does not exceed 8.5%. Compared to ethanol, a HOC up to 14.7% higher was achieved for butanol. The present work confirms that in mass fractions up to 30%, butanol can be satisfactorily blended with gasoline and diesel without causing major impacts on the fuel energy density and, more than that, can offer energy advantage compared to ethanol.

  相似文献   

13.
12-钨磷酸催化合成甲基叔丁基醚   总被引:3,自引:0,他引:3  
甲基叔丁基醚(MTBE)作为汽油抗暴剂已经在全世界范围内普遍使用,它不仅能提高汽油辛烷值,而且还能改善汽车性能,降低排气中CO和有机物含量,同时降低汽油生产成本.  相似文献   

14.
The influences of adding sodium to zirconia on the acid-base properties of the surface and on the catalytic conversion of ethanol and acetone were investigated. The rates of ethanol dehydration, dehydrogenation and coupling were evaluated in a fixed-bed flow reactor operating at temperatures from 613 to 673 K. The rate of acetone condensation was evaluated in the same reactor operating at 473–573 K. Addition of 1.0 wt% Na to ZrO2 decreased the rate of ethanol dehydration by more than an order of magnitude, which was consistent with a neutralization of acid sites evaluated by ammonia adsorption microcalorimetry. Addition of 1.0 wt% Na to ZrO2 also increased the base site density quantified by carbon dioxide adsorption microcalorimetry and the rate of acetone condensation. Although the rate of ethanol coupling was not increased by the addition of Na, the overall selectivity of ethanol to butanol was improved over the 1.0 wt% Na/ZrO2 sample because of the significant inhibition of ethanol dehydration.  相似文献   

15.
Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH)2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH)2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone–butanol–ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH)2 was to remove the salts in the prehydrolysates by precipitation.  相似文献   

16.
The effect of platinum loading (0.09–1.00 mass %) on the performance of ceria-zirconia supported catalysts in the total oxidation of ethanol and toluene in air was investigated. The introduction of platinum promoted the reduction of surface cerium and decreased the acidity of the catalysts. In ethanol oxidation, the temperature of 50 % conversion decreased with increasing platinum content. This increase in catalytic performance was more pronounced for the catalysts with 0.59 mass % and 1.00 mass % Pt. On the other hand, higher amount of by-products (mainly acetaldehyde) was observed at increased platinum loadings. For all catalysts, a correlation between their H2-TPR profiles and catalytic performance was revealed. In toluene oxidation, only the catalysts with 0.59 mass % and 1.00 mass % Pt exhibited a lower temperature of 50 % conversion than pristine ceria-zirconia. The effect of platinum loading was less pronounced than in ethanol oxidation and a correlation between reduction behaviour and catalytic performance was not observed. The superior catalytic performance of the catalysts with 0.59 mass % and 1.00 mass % of Pt in both ethanol and toluene oxidation was ascribed to the presence of large platinum nanoparticles, which were not observed at lower Pt loadings.  相似文献   

17.
We used micropipette aspiration of giant unilamellar vesicles to directly measure the areal expansion of gel (Lβ′) phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers induced by exposure to ethanol/water mixtures. Areal expansion began in 7 vol% ethanol and increased monotonically as the concentration of ethanol was increased to 15 vol% at which point areal expansion reached a plateau of 50%. This ethanol concentration range is in good agreement with that of the interdigitated phase (LβI) of DPPC, therefore, we believe that this is the first direct measurement of the areal expansion accompanying interdigitation of gel-phase lipids. Our observations are consistent with the presence of coexisting LβI and Lβ′ phases in ethanol concentrations between 7% and 15 vol% and 100% LβI phase in 15 vol% ethanol and higher. We observed a bimodal distribution of areal expansion (0% and 20%) induced by 7 vol% ethanol indicating that at the threshold concentration, interdigitation is induced in only a portion of DPPC vesicles. Areal expansion could not be easily reversed, consistent with kinetic trapping of the LβI phase. DPPC vesicles exposed to butanol at the known threshold and plateau concentrations for the LβI phase displayed areal expansion behavior consistent with our ethanol observations. However, the area expanded significantly faster for DPPC bilayers exposed to butanol vs. ethanol, which we attribute to enhanced partitioning of the longer-chained butanol into the lipid headgroups. Ethanol-induced areal expansion of DPPC bilayers was inhibited by inclusion of 10 mol% and 25 mol% cholesterol in the bilayer. However, areal expansion could be induced by application of tensions (∼8 mN/m) similar to the phenomena of interdigitation induced by high pressure. The presence of 20 vol% ethanol significantly decreased surface cohesion of DPPC bilayers containing 25 mol% cholesterol as evidenced by a decreased area compressibility modulus and lysis tension.  相似文献   

18.
The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3?±?0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8?±?0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3?±?0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.  相似文献   

19.
Acetone butanol ethanol was produced in a continuous immobilized cell (biofilm) plug-flow reactor inoculated with Clostridium beijerinckii BA101. To achieve high reactor productivity, C. beijerinckii BA101 cells were immobilized by adsorption onto clay brick. The continuous plug-flow reactor offers high productivities owing to reduced butanol inhibition and increased cell concentration. Although high productivity was achieved, it was at the expense of low sugar utilization (30.3%). To increase sugar utilization, the reactor effluent was recycled. However, this approach is complicated by butanol toxicity. The effluent was recycled after removal of butanol by pervaporation to reduce butanol toxicity in the reactor. Recycling of butanolfree effluent resulted in a sugar utilization of 100.7% in addition to high productivity of 10.2g/(L·h) at a dilution rate of 1.5 h−1. A dilution rate of 2.0h−1 resulted in a reactor productivity of 16.2g/(L·h) and sugar utilization of 101.4%. It is anticipated that this reactor-recovery system would be economical for butanol production when using C. beijerinckii BA101.  相似文献   

20.
The distribution of ethanol and butanol between n-hexane and aqueous solutions of ammonium sulfate at 20 ± 1°C was studied over an ideal concentration region of the substances in the organic phase. The distribution constants of the substances and the increments of the methylene and hydroxyl groups of the alcohols in the logarithm of the distribution constant were calculated. It was found that an increase in the salt concentration in the aqueous phase resulted in a considerable increase in the increment of the methylene group and significantly improved the alcohol separation efficiency. The dependence of the distribution coefficients of ethanol and butanol on the concentration of ethanol in the aqueous phase was studied. A dramatic decrease in the increment of the methylene group was found as the ethanol concentration in the salt phase was increased above 4.5 vol %. A procedure was developed for extraction sample preparation for the subsequent determination of the characteristic components of cognac products and for the authentication of these products by gas chromatography. The essence of this procedure consists in the hexane extraction of butanol and other hydrophobic substances from cognac product samples prediluted with an aqueous solution of ammonium sulfate. In this case, the major portion of ethanol, as well as hydrophilic and thermally unstable impurities, which complicate analysis with direct sample injection, remained in the salt solution. The procedure was tested with 16 samples of cognac and cognac spirits from Georgia, including both authentic and adulterated products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号