首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The microstructure of nitrogen implanted AISI 302 austenitic stainless steel and the effect of long-term room temperature ageing on it have been studied. Samples were implanted in 1992 with 2.5×1021 N2+ m−2 at 130 keV. The characteristics of the implanted layer and the depth profile have been investigated by scanning transmission electron microscope combined with energy dispersive X-ray spectrometry. Electron diffraction patterns recorded in the implanted layer using transmission electron microscopy confirm the formation of CrN along with the presence of Cr2N. The identification of phases by glancing angle X-ray diffraction also indicates the formation of Cr2N and nitrogen solid solutions. The effects of ageing on the microstructure are observed to be small.  相似文献   

2.
Effect of catalyst thickness (2, 4, and 6 nm) and acetylene-hydrogen gas ratio (1/4, 2/4, and 3/4) on the synthesis of carbon nanotubes is reported in this article. Synthesized nanotubes are characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and Raman effect. From SEM results, nanotubes growth is less for higher thickness, as at higher thickness catalyst nanoparticles agglomerate which suppress the growth of nanotubes. Raman spectroscopy results reveal that at higher thickness defects density increases. Nanotube of better crystallinity and graphitic outer walls grows for lower acetylene-hydrogen gas ratio and at smaller thickness of catalyst layer. The sheet resistance of carbon nanotube thin film is measured by using Hall effect measurement systems. Smallest sheet resistance among synthesized multi-walled carbon nanotubes sample is obtained for nanotubes grown on 2 nm thick catalyst film and is 0.9 kΩ/square.  相似文献   

3.
Supported metal nanoparticles play key roles in nanoelectronics, sensors, energy storage/conversion, and catalysts for the sustainable production of fuels and chemicals. Direct observation of the dynamic processes of nanocatalysts at high temperatures and the confinement of supports is of great significance to investigate nanoparticle structure and functions for practical utilization. Here, in situ high‐resolution transmission electron microscopy photos and videos are combined with dynamics simulations to reveal the real‐time dynamic behavior of Pt nanocatalysts at operation temperatures. Amorphous Pt surface on moving and deforming particles is the working structure during the high operation temperature rather than a static crystal surface and immobilization on supports as proposed before. The free rearrangement of the shape of Pt nanoparticles allows them to pass through narrow windows, which is generally considered to immobilize the particles. The Pt particles, no matter what their sizes, prefer to stay inside nanopores even when they are fast moving near an opening at temperatures up to 900 °C. The porous confinement also blocks the sintering of the particles under the confinement size of pores. These contribute to the continuous high activity and stability of Pt nanocatalysts inside nanoporous supports during a long‐term evaluation of catalytic reforming reaction.  相似文献   

4.
高熵会带来热力学上的高熵效应、结构上的晶格畸变效应、动力学上的迟滞扩散效应以及性能上的"鸡尾酒"效应,通过高熵设计来提高陶瓷材料的性能是目前研究的热点,而通过透射电镜揭示高熵结构及其与性能相关性的研究还很缺乏。本研究以相应金属氧化物、碳化硼和石墨为原材料,在制备高熵硼化物和高熵碳化物粉体的基础上,利用放电等离子体烧结制备得到高熵(TiZrHfNbTa)B2和(TiZrHfNbTa)C陶瓷。采用透射电子显微镜及其能谱分析手段对两种高熵陶瓷进行了纳米尺度和原子尺度的结构表征,发现过渡金属元素固溶后保持了晶体结构的完整性,五种元素分布均匀,但在原子尺度存在固溶元素的浓度振荡、原子离散和晶格应变。本工作获得的原子尺度的固溶结构信息将有助于对高熵陶瓷构效关系的理解,并为高熵陶瓷的组分和结构设计提供实验依据。  相似文献   

5.
用低压金属有机物化学汽相沉积法(MOCVD)在Si(100)无偏角和Si(100)4°偏角衬底上外延生长GaAs层。异质外延采用两步生长法,并分别优化了两种衬底上的非晶低温缓冲层的生长条件。用X射线双晶衍射(XRD)和透射电子显微镜(TEM)对两种衬底上的GaAs外延层进行了结构表征,其中Si(100)4°偏角衬底上1.8μm厚GaAs的(004)面XRD衍射半高全宽338 arcsec,同比在无偏角衬底上的半高全宽为494arcsec,TEM图片显示4°偏角衬底上外延层中的位错密度大大降低。  相似文献   

6.
采用小角X射线散射(SAXS)方法研究了PAN纤维在炭化及石墨化过程中微孔缺陷结构随热处理温度的变化.由微孔结构散射形成的PAN基碳纤维SAXS散射花样经圆积分处理后为光滑曲线.使用一维散射曲线计算得到微孔结构均方回转半径、相对孔体积、孔隙率、比表面积结构参数随温度的变化规律.结果表明:随热处理温度提高PAN基碳纤维微孔结构变化分为三个阶段:400~700℃微孔体积变化(孔的融合)为主,形态变化为辅;700~1800℃微孔体积变化(孔的分裂与缩小)与形态变化(边缘复杂化)基本同步;而1800~2400℃微孔形态变化为主,体积变化为辅.  相似文献   

7.
Direct observation of the dissolution behavior of nanomaterials could provide fundamental insight to understanding their anisotropic properties and stability.The dissolution mechanism in solution and vacuum has been well documented.However,the gas-involved dissolution and regrowth have seldom been explored and the mechanisms remain elusive.We report herein,an in situ TEM study of the dissolution and regrowth dynamics of MoO2 nanowires under oxygen using environmental transmission electron microscopy (ETEM).For the first time,oscillatory dissolution on the nanowire tip is revealed,and,intriguingly,simultaneous layer-by-layer regrowth on the sidewall facets is observed,leading to a shorter and wider nanowire.Combined with first-principles calculations,we found that electron beam irradiation caused oxygen loss in the tip facets,which resulted in changing the preferential growth facets and drove the morphology reshaping.  相似文献   

8.
Fe3O4 nanoparticles are synthesised via two different methods: (1) co-precipitation of Fe2+ and Fe3+ ions and (2) oxidative alkaline hydrolysis of Fe2+ ions under atmospheric pressure using different protective agents (PEG 200 and PEG 3000) and urea as a base. The preparation method and the polyethylene glycol (PEG) used are concurrently affecting the phase stability of the formation of the iron oxides: the co-precipitation method using PEG 200 (E4a) or PEG 3000 (E4b) leads to the formation of different ratios of Fe2O3 and Fe3O4, whereas the oxidative hydrolysis of Fe2+ using PEG 200 gives Fe3O4 (E2) powder as a major product. The average crystallites size of E4a and E4b is almost identical, i.e. around 19?nm but the saturation magnetisation of E4b is three times larger than that of E4a. The sample E2 shows the highest saturation magnetisation value 74?emu/g, with an average crystallites size of 71?nm. Transmission electron microscopy analysis confirmed that the E2 sample shows the presence of needles crystals with typical sizes around 10 and 50?nm and its selected area diffraction (SAD) shows a typical diffraction of the spinel structure of magnetite. On the other hand, E4b sample shows elongated nanoparticles with typical sizes around 24?nm and its SAD confirmed the presence of a mixture of Fe2O3 and Fe3O4 as many dispersed spots were obtained.  相似文献   

9.
This study describes the synthesis, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite solid lubricant thin films grown by cosputtering at room and 300 °C in situ substrate temperatures. The films were studied by focused ion beam (FIB) prepared cross-sectional scanning and transmission electron microscopies and X-ray diffraction (XRD) to determine the thin film structure and crystallinity as a function of varying titanium atomic percent and sputtering power. XRD confirmed that the pure WS2 thin films grown at room temperature (RT) and 300 °C were crystalline with hexagonal texture. Basal planes with c-axis orientated parallel to the substrate surface [(100) and (101) texture] were predominantly observed in all thin films. Co-sputtering at RT with any amount of Ti induced a dramatic change in the microstructure, i.e., Ti prevented the formation of crystalline WS2, making it amorphous with well-dispersed nanocrystalline (1-3 nm) precipitates. For RT friction tests, longer thin film lifetimes were exhibited when the thin films were doped with low amounts of Ti (∼ 5-14 at.%) in comparison to pure WS2 but there was no change in friction coefficient (∼ 0.1). For high temperature (500 °C) friction tests, slightly higher friction coefficients (0.2) but longer lifetimes were observed for the low at.% Ti doped thin films. Mechanisms of solid lubrication were studied by FIB prepared cross-sectional specimens and Raman spectroscopy wear maps inside the wear tracks to determine the sub-surface deformation behavior and formation of tribochemical products, respectively. It was determined that WS2 oxidized to form relatively low shear strength WO3 during wear (tribo-oxidation) and heating at 500 °C (thermal oxidation) as determined by Raman spectroscopy in the wear track and transfer film (third body) on the counterface.  相似文献   

10.
Similar element substitution has been applied for improving glass forming ability (GFA) in Al86Ni9La5 amorphous alloy. The effects of La-Ce and Ni-Co pairs on the GFA, magnetic properties and hardness of Al-Ni-La alloy were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), magnetometer and hardness-tester. The results show the GFA of the samples in the order of Al86(Ni0:5Co0:5)9(La0:5Ce0:5)5< Al86Ni9La5<Al86Ni9(La0:5Ce0:5)5, implying that similar element substitution has a limited enhancing effect on the GFA of the present Al-Ni-La alloy. In addition, the measured samples display a diamagnetic behavior at room temperature. The variations of diamagnetic behavior as well as the microhardness of the samples are strongly dependent on the icrostructure, i.e., the amounts of the icosahedral structure and precipitates, after the similar element substitution in the Al-Ni-La alloy.  相似文献   

11.
The structure of a thin film deposited using tetrakis-(dimethylamino)-titanium (Ti(N(CH3)2)4) as a precursor onto a Si(100)-2 × 1 substrate at ultra-high-vacuum conditions was investigated as a function of film thickness for the films of 20 and 145 nm in the presence of surface copper and fluorine produced by in situ dosing of a common copper deposition precursor, (hexafluoroacetylacetonate)Cu(vinyltrimethylsilane), (hfac)Cu(VTMS), and a hydrogenated form of the hfac ligand, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, hfacH. A combination of surface, depth-profiling, and microscopy analytical techniques suggests that the structure of the titanium carbonitride film depends profoundly on its thickness. While the composition of the film was relatively constant throughout its whole thickness, the nanometer-scale structure changed from amorphous at the top of a 145-nm-thick film, to having a significant amount of small (∼ 5 nm) crystallites closer to the TiCN/Si interface. These studies also confirmed the absence of microfractures in the film prepared by this approach. The ex situ depth profiling investigation suggested that if (hfac)Cu(VTMS) is deposited on a TiCN-precovered silicon substrate and briefly annealed to 800 K, the film acts as a diffusion barrier for copper, while surface fluorine penetrates the film rather easily, resulting in fluorine that is distributed uniformly throughout the film.  相似文献   

12.
D. A. Tanner  S. Nakahara 《Strain》2016,52(2):162-171
Strained superlattices (SSLs) are typically found inside the p‐n junction area of semiconductor devices and consist of very thin alternating layers of different material. There exists a small lattice mismatch between these materials which results in localised strain, as in the case of germanium‐silicon/silicon SSLs. Strain measurements using a convergent beam electron diffraction (CBED) technique inside a transmission electron microscope (TEM) have indicated that the strain measured normal to these germanium–silicon/silicon SSLs varies almost sinusoidally, in spite of theoretical predictions which indicate a much sharper change in strain between these layers. A theoretical formulation involving an elasticity solution has been developed to predict the strain inside these SSL structures. The comparison of theoretical and experimental results clearly quantifies the effect of beam size on the spatial resolution of CBED measurements. Given that beam size is critically dependent on the spot size of the beam, the convergence angle, the specimen thickness and the position of the focused plane, these parameters are all clearly accounted for in the theoretical predictions.  相似文献   

13.
单分散SiO2/TiO2/SiO2多层复合微球的制备   总被引:2,自引:0,他引:2  
采用一种以醇盐水解法为基本的生长硅溶胶的方法,制备了粒径为200nm的单分散二氧化硅球形颗粒,并将其作为核心,利用常温连续进料的钛酸丁酯水解的多步法,在二氧化硅核心外经多次包覆形成厚层二氧化钛;在正硅酸 酯的水解和陈化环境下,将上述TiO2/SiO2复合颗粒外再包覆一薄层二氧化硅,形成一种高折射率,可用于组装光子晶体的SiO2/TiO2/SiO2多层复合微球,对该复合微球用重力沉降法、透射电镜法(TEM)、X射线能谱分析法(EDS)进行了表征。其中,重力沉降法是一种将Stokes公式为基础的复合颗粒的粒径与沉降速度关系式所得的一系列数据进行拟合外延,来测定复合颗粒的粒径及包覆厚度的方法。  相似文献   

14.
Nanocasting, using ordered mesoporous silica or carbon as a hard template, has enormous potential for preparing novel mesoporous materials with new structures and compositions. Although a variety of mesoporous materials have been synthesized in recent years, the growth mechanism of nanostructures in a confined space, such as mesoporous channels, is not well understood, which hampers the controlled synthesis and further application of mesoporous materials. Here, the nucleation and growth of WO3‐networked mesostructures within an ordered mesoporous matrix, using an in situ transmission electron microscopy heating technique and in situ synchrotron small‐angle X‐ray scattering spectroscopy, are probed. It is found that the formation of WO3 mesostructures involves a particle‐mediated transformation and coalescence mechanism. The liquid‐like particle‐mediated aggregation and mesoscale transformation process can occur in ≈10 nm confined mesoporous channels, which is completely unexpected. The detailed mechanistic study will be of great help for experimental design and to exploit a variety of mesoporous materials for diverse applications, such as catalysis, absorption, separation, energy storage, biomedicine, and nanooptics.  相似文献   

15.
Three central themes in the study of the phenomenon of resistive switching are the nature of the conducting phase, why it forms, and how it forms. In this study, the answers to all three questions are provided by performing switching experiments in situ in a transmission electron microscope on thin films of the model system polycrystalline SrTiO3. On the basis of high‐resolution transmission electron microscopy, electron‐energy‐loss spectroscopy and in situ current–voltage measurements, the conducting phase is identified to be SrTi11O20. This phase is only observed at specific grain boundaries, and a Ruddlesden–Popper phase, Sr3Ti2O7, is typically observed adjacent to the conducting phase. These results allow not only the proposal that filament formation in this system has a thermodynamic origin—it is driven by electrochemical polarization and the local oxygen activity in the film decreasing below a critical value—but also the deduction of a phase diagram for strongly reduced SrTiO3. Furthermore, why many conducting filaments are nucleated at one electrode but only one filament wins the race to the opposite electrode is also explained. The work thus provides detailed insights into the origin and mechanisms of filament generation and rupture.  相似文献   

16.
17.
D.Q. Peng  X.D. Bai  F. Pan 《Vacuum》2006,81(4):507-516
In order to simulate the irradiation damage, argon ions were implanted into zircalloy-2 alloy with a fluence ranging from 1×1016 to 1×1017 ions/cm2, using an implanter at an extraction voltage of 190 kV, at liquid nitrogen temperature. Then the effect of argon ion implantation on the aqueous corrosion behavior of zircalloy-2 alloy was studied. The valence states of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the argon ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircalloy-2 alloy in a 1 M H2SO4 solution. It was found that the bubbles were formed on the surface of implanted samples; the bubbles grew larger with increasing argon fluence. The microstructure of argon-implanted samples changed from amorphous to partial amorphous, then to polycrystalline and finally to amorphous. The bubble forming and changing and microstructure changes affected the corrosion properties of implanted samples. Finally, the mechanism of the corrosion behavior of argon-implanted zircalloy-2 alloy is discussed.  相似文献   

18.
The electrode materials conducive to conversion reactions undergo large volume change in cycles which restrict their further development. It has been demonstrated that incorporation of a third element into metal oxides can improve the cycling stability while the mechanism remains unknown. Here, an in situ and ex situ electron microscopy investigation of structural evolutions of Cu‐substituted Co3O4 supplemented by first‐principles calculations is reported to reveal the mechanism. An interconnected framework of ultrathin metallic copper formed provides a high conductivity backbone and cohesive support to accommodate the volume change and has a cube‐on‐cube orientation relationship with Li2O. In charge, a portion of Cu metal is oxidized to CuO, which maintains a cube‐on‐cube orientation relationship with Cu. The Co metal and oxides remain as nanoclusters (less than 5 nm) thus active in subsequent cycles. This adaptive architecture accommodates the formation of Li2O in the discharge cycle and underpins the catalytic activity of Li2O decomposition in the charge cycle.  相似文献   

19.
We investigate the growth of ZnS nanoparticles by a real-time simultaneous small and wide angle X-ray scattering (SAXS, WAXS) study using synchrotron radiation. Zinc chloride and elemental sulfur were dissolved in oleylamine. The formation of nanoparticles was induced by heating to 170 °C and 215 °C. The influence of temperature, reaction time, and sulfur concentration was investigated. After a short phase of rapid growth, saturation in size and a slower growth is observed depending on the temperature. The final size of the nanoparticles ranges between 2 and 6 nm for the investigated growth conditions and increases with the reaction temperature and sulfur concentration. SAXS analysis allows for determination of the size of the nanoparticles and proves also the existence of an organized layer of oleylamine molecules covering the nanoparticles' surfaces, which, however, appears only for diameters of the nanoparticles larger than approximately 2.8 nm. The investigation of the measured structure factor of the nanoparticle assemblies showed that the distance of an attractive interaction is 2.5 nm, which was interpreted as a consequence of the ordered oleylamine surface layer.  相似文献   

20.
Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号