首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, performance details and operational benefits of a large scale solar trigeneration system that provides for solar assisted desiccant cooling, heating and hot water generation installed in a teaching institute building have been reported. A two-rotor desiccant system designed for handling 12 000 m3/hr of air was integrated into existing plant to provide a net reduction in energy consumption over the pre-existing heating ventilation and air-conditioning and domestic hot water systems. The system is controlled and monitored by a building management system which has been used to investigate and analyse the typical system behaviour. Heat from solar energy contributed consistently to reduce gas usage for water heating and on an annual basis showed a reduction of 21% of consumed energy. The solar energy contribution for space heating varied over winter months and during some months it was observed to contribute more than 50% of the total energy requirements for space heating. Under suitable ambient conditions, approximately 35% of total building cooling load was met by the solar driven desiccant cooling system. Continuous monitoring has also helped understand some of the operational issues of the system.  相似文献   

2.
In this study, zero energy building (ZEB) with four occupants in the capital and most populated city of Iran as one of the biggest greenhouse gas producers is simulated and designed to reduce Iran's greenhouse emissions. Due to the benefits of hydrogen energy and its usages, it is used as the primary energy storage of this building. Also, the thermal comfort of occupants is evaluated using the Fanger model, and domestic hot water consumption is supplied. Using hydrogen energy as energy storage of an off-grid zero energy building in Iran by considering occupant thermal comfort using the fanger model has been presented for the first time in this study. The contribution of electrolyzer and fuel cell in supplying domestic hot water is shown. For this simulation, Trnsys software is used. Using Trnsys software, the transient performance of mentioned ZEB is evaluated in a year. PV panels are used for supplying electricity consumption of the building. Excess produced electricity is converted to hydrogen and stored in the hydrogen tank when a lack of sunrays exists and electricity is required. An evacuated tube solar collector is used to produce hot water. The produced hot water will be stored in the hot water tank. For supplying the cooling load, hot water fired water-cooled absorption chiller is used. Also, a fan coil with hot water circulation and humidifier are used for heating and humidifying the building. Domestic hot water consumption of the occupants is supplied using stored hot water and rejected heat of fuel cell and the electrolyzer. The thermal comfort of occupants is evaluated using the Fanger model with MATLAB software. Results show that using 64 m2 PV panel power consumption of the building is supplied without a power outage, and final hydrogen pressure tank will be higher than its initial and building will be zero energy. Required hot water of the building is provided with 75 m2 evacuated tube solar collector. The HVAC system of the building provided thermal comfort during a year. The monthly average of occupant predicted mean vote (PMV) is between ?0.4 and 0.4. Their predicted percentage of dissatisfaction (PPD) is lower than 13%. Also, supplied domestic hot water (DHW) always has a temperature of 50 °C, which is a setpoint temperature of DHW. Finally, it can be concluded that using the building's rooftop area can be transformed to ZEB and reduce a significant amount of greenhouse emissions of Iran. Also, it can be concluded that fuel cell rejected heat, unlike electrolyzer, can significantly contribute to supplying domestic hot water requirements. Rejected heat of electrolyzer for heating domestic water can be ignored.  相似文献   

3.
Solar heat pump systems for domestic hot water   总被引:3,自引:0,他引:3  
Vapour compression heat pumps can upgrade ambient heat sources to match the desired heating load temperature. They can offer considerable increase in operational energy efficiency compared to current water heating systems. Solar heat pumps collect energy not only from solar radiation but also from the ambient air. They can operate even at night or in totally overcast conditions. Since the evaporator/collector operates at temperatures lower than ambient air temperature it does not need glazing or a selective coating to prevent losses. Currently, however, they are not used much at all in domestic or commercial water heating systems. In this paper comparison is made of a conventional solar hot water system, a conventional air source heat pump hot water system and a solar heat pump water heating system based on various capital city locations in Australia. A summary is given of specific electricity consumption, initial and operating costs, and greenhouse gas generation of the three systems dealt with in this paper. The ultimate choice of unit for a particular location will depend heavily on the solar radiation, climate and the local price paid for electricity to drive or boost the unit chosen.  相似文献   

4.
中空纤维膜加湿系统能从根本上解决空气加湿过程中气液夹带的问题.通过搭建太阳能驱动的中空纤维膜加热加湿系统试验台并在冬季进行实验测试,分析出太阳能辐射量、空气体积流量和热水体积流量对系统加热加湿性能的影响.研究发现提高太阳能辐射量和空气体积流量对系统的加湿能力和热性能系数均有积极影响,而前者的影响更为显著.为了获得最好的...  相似文献   

5.
This study examined an integrated solution of the building energy supply system consisting of flat plate solar thermal collectors in combination with a ground-source heat pump and an exhaust air heat pump for the heating and cooling, and production of domestic hot water. The supply energy system was proposed to a 202 m2 single-family demo dwelling (SFD), which is defined by the Norwegian Zero Emission Building standard. The main design parameters were analyzed in order to find the most essential parameters, which could significantly influenced the total energy use. This study found that 85% of the total heating demand of the SFD was covered by renewable energy. The results showed that the solar energy generated by the system could cover 85–92% and 12–70% of the domestic hot water demand in summer and winter respectively. In addition, the solar energy may cover 2.5–100% of the space heating demand. The results showed that the supply air volume, supply air and zone set point temperatures, auxiliary electrical volume, volume of the DHW tank, orientation and tilt angle and the collector area could influenced mostly the total energy use.  相似文献   

6.
Australia has a very sunny climate, with a very high demand for air conditioning. Implementing solar assisted air conditioning is an ideal option to achieve a high solar fraction which leads to a significant amount of energy and greenhouse gas emission savings. Solar assisted air conditioning systems are environmentally friendly by being constructed in a way that minimises the need for chlorofluorocarbons CFC, Hydro chlorofluorocarbons HCFC or Chlorofluorocarbons HFC refrigerants and by using a low grade thermal renewable energy, therefore, making them energy efficient and environmentally safe. They can be used either as stand-alone systems or with conventional AC, to improve the indoor air quality. Solar cooling is a new and a fast growing technology compared to other fields of solar energy applications. On the other hand most of the current solar cooling applications are demonstration projects in nature; the technologies are advancing yet still need a lot of additional design, planning, development, and research efforts. T now solar assisted air conditioning's main obstacles are the high installation costs, and the lack of knowledge and familiarity with this technology between designers, developers and architects.In this paper a feasibility study is carried out to assess a solar assisted air conditioning system for an office building under three of Queensland's subtropical climates; Rockhampton, Gladstone, and Emerald. The technical aspects of a proposed solar cooling system are investigated. Cooling load profile for a proposed reference building was obtained using TRNSYS software under the influence of these different climates. An electric vapour compression pump, with 2.5 coefficient of performance (COP) for cooling is used as a reference system to assess the primary energy consumption, assuming 80% of primary energy consumed by the reference conventional system is replaced by solar energy. The results of analysing the proposed system indicated that an 80% of the primary energy savings can be achieved by installing 50 m2 of solar collectors and 1.8 m3of hot water's storage tank under the three selected climates.  相似文献   

7.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

8.
利用太阳能集热器制得低温热水作为地板辐射采暖系统的热源,是一种清洁、节能、舒适的采暖方式。在南京地区搭建了太阳能地板辐射采暖系统实验台,系统运行策略为白天集热、夜晚采暖,通过实验得到了集热器集热效率、地板进出水温度、室内不同朝向围护结构温度、不同高度的空气温度等参数,最后对系统的性能进行了概括和总结。  相似文献   

9.
可再生能源的高效利用是降低建筑能耗的有效方法。将相变储能墙与太阳能热风相结合,可改善太阳能热风采暖的不稳定性,从而提高太阳能的利用效率。通过试验和ANSYS模拟软件对复合系统的分析,确定相变储能墙体的储热特性和合理用量,研究复合采暖系统的室温变化和传热规律,分析相变储能墙对采暖系统的贡献率。结果表明:与未采暖房间相比,复合采暖系统可以使室内平均温度提高7~15℃,该复合采暖系统具有一定的应用前景;当太阳能空气集热器的送风口温度在37~77℃时,相变材料能够充分利用,相变墙整体的相变比例约为40%,从线性回归比例看,复合采暖效果要比太阳能热风采暖效果好。  相似文献   

10.
A study was conducted to store solar energy in an underground rock-bed for greenhouse heating. Experiments were carried out in two identical polyethylene tunnel type greenhouses, each with 15 m2 ground area. Rocks were filled in two canals excavated and insulated in the soil of one of the greenhouses. Greenhouse air was pushed through the rock-bed by a centrifugal fan with 1100 m3/h air flow rate and controlled by two thermostats when the energy storage or release was required. No crops were grown in the greenhouses and the vents were kept closed unless excessive condensation occurrence inside the greenhouses. The results of this study showed that the rock-bed system created an air temperature difference of about 10 °C at night, between the two greenhouses, the control one having the lower temperature. Furthermore, the rock-bed system kept the inside air temperature higher than that of outside air at night, even in an overcast day following a clear day. Whilst solar energy collection efficiency of the system was 34%, its energy recovery or release efficiency was higher than 80%. A numerical mathematical model considered here represented actual data well. An economic analysis indicated that the rock-bed system is more economical than the LPG or petroleum-based fuel burning heating systems widely used in Turkish greenhouses.  相似文献   

11.
This paper describes the design of a solar air heating and night/day exchange cooling system with emphasis on the operational modes. In this type of system the collector absorbs solar energy and converts it to heat for space heating and domestic water heating. Cooling is accomplished by using the cool night air available in dry climates) to cool a pebble-bed storage unit and subsequently using the cool pebbles to lower the air temperature in the building during the day. Circulation is from the solar system to the building in the same manner as most modern heating and air conditioning units but uses air as the medium for heat transfer. The air system is particularly suited for climatic regions where heating loads are high and cooling requirements are moderate. The system utilized in Solar House II operates in either the heating or cooling mode as selected through a seasonable change-over switch. Solar preheated hot water is furnished for domestic use in either mode.  相似文献   

12.
Buildings represent nearly 40 percent of total energy use in the U.S. and about 50 percent of this energy is used for heating, ventilating, and cooling the space. Conventional heating and cooling systems are having a great impact on security of energy supply and greenhouse gas emissions. Unlike conventional approach, this paper investigates an innovative passive air conditioning system coupling earth-to-air heat exchangers (EAHEs) with solar collector enhanced solar chimneys. By simultaneously utilizing geothermal and solar energy, the system can achieve great energy savings within the building sector and reduce the peak electrical demand in the summer. Experiments were conducted in a test facility in summer to evaluate the performance of such a system. During the test period, the solar chimney drove up to 0.28 m3/s (1000 m3/h) outdoor air into the space. The EAHE provided a maximum 3308 W total cooling capacity during the day time. As a 100 percent outdoor air system, the coupled system maximum cooling capacity was 2582 W that almost covered the building design cooling load. The cooling capacities reached their peak during the day time when the solar radiation intensity was strong. The results show that the coupled system can maintain the indoor thermal environmental comfort conditions at a favorable range that complies with ASHRAE standard for thermal comfort. The findings in this research provide the foundation for design and application of the coupled system.  相似文献   

13.
A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all direct radiation will block up to 77% of the solar energy from entering the greenhouse in summer, reducing the required cooling capacity by about a factor 4. This drastically reduce the need for cooling in the summer and reduce the use of screens or lime coating to reflect or block radiation.All of the direct radiation is concentrated by a factor of 25 on a photovoltaic/thermal (PV/T) module and converted to electrical and thermal (hot water) energy. The PV/T module is kept in position by a tracking system based on two electric motors and steel cables. The energy consumption of the tracking system, ca. 0.51 W m−2, is less than 2% of the generated electric power yield. A peak power of 38 W m−2 electrical output was measured at 792 W m−2 incoming radiation and a peak power of 170 W m−2 thermal output was measured at 630 W m−2 incoming radiation of. Incoming direct radiation resulted in a thermal yield of 56% and an electric yield of 11%: a combined efficiency of 67%. The annual electrical energy production of the prototype system is estimated to be 29 kW h m−2 and the thermal yield at 518 MJ m−2. The collected thermal energy can be stored and used for winter heating. The generated electrical energy can be supplied to the grid, extra cooling with a pad and fan system and/or a desalination system. The obtained results show a promising system for the lighting and temperature control of a greenhouse system and building roofs, providing simultaneous electricity and heat. It is shown that the energy contribution is sufficient for the heating demand of well-isolated greenhouses located in north European countries.  相似文献   

14.
The main ways of improving the performance efficiency of solar energy (SE) use in hot water supply systems (HWSSs) are discussed. It is established that the environmental characteristics of flat-plate solar water heating collectors (FPSWHCs) for heating water in HWSSs depend on the water heating temperature in these systems.  相似文献   

15.
Institutional buildings contain different types of functional spaces which require different types of heating, ventilating and air conditioning (HVAC) systems. In addition, institutional buildings should be designed to maintain an optimal indoor comfort condition with minimal energy consumption and minimal negative environmental impact. Recently there has been a significant interest in implementing desiccant cooling technologies within institutional buildings. Solar desiccant cooling systems are reliable in performance, environmentally friendly and capable of improving indoor air quality at a lower cost. In this study, a solar desiccant cooling system for an institutional building in subtropical Queensland (Australia) is assessed using TRNSYS 16 software. This system has been designed and installed at the Rockhampton campus of Central Queensland University. The system's technical performance, economic analysis, energy savings, and avoided gas emission are quantified in reference to a conventional HVAC system under the influence of Rockhampton's typical meteorological year. The technical and economic parameters that are used to assess the system's viability are: coefficient of performance (COP), solar fraction, life cycle analysis, payback period, present worth factor and the avoided gas emission. Results showed that, the installed cooling system at Central Queensland University which consists of 10 m2 of solar collectors and a 0.400 m3 of hot water storage tank, achieved a 0.7 COP and 22% of solar fraction during the cooling season. These values can be boosted to 1.2 COP and 69% respectively if 20 m2 of evacuated tube collector's area and 1.5 m3 of solar hot water storage volume are installed.  相似文献   

16.
从初投资和运行费用方面,对拉萨市民用建筑的外围护结构保温、被动太阳能和民用采暖可能采用的三种热源系统--太阳能热水、燃煤集中供热和电蓄热锅炉供热进行了综合比较.结果表明:拉萨市的民用建筑采暖应建立在建筑保温和被动太阳能利用的基础上,而太阳能热水热源在当地具有更好的经济性.  相似文献   

17.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

18.
This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions.  相似文献   

19.
As renewable energy sources and net-zero energy homes become increasingly pervasive within the residential building industry, further reductions in consumption patterns will occur through demand side management (DSM). DSM can include measures such as energy-efficient system design, automated control and energy management systems, or policies and monitoring systems intended to alter user behavior. For an energy-efficient modern residence designed within a tropical context, several DSM strategies are considered for reductions in operational-phase energy consumption: a lightweight, thermally high-performing building envelope, installation of light dimmers to enhance user control of lighting, and comparison of a solar hot water system versus a point-of-use electric water heater to produce hot water for bathing demands. The energy-consumption savings associated with the three DSM strategies are simulated and normalized to an energy savings per cost of implementation basis in kWh per 1000 Thai Baht (THB) for comparison. The results show that financial investments in low-energy hot water heaters (i.e., solar water heating systems) result in relatively higher energy savings per unit financial investment than the other two strategies. Conversely, the installation of a lightweight, well-insulated envelope is highly expensive relative to its associated energy savings over a 25-year time frame. The savings associated with the insulated envelope, light dimmers, and hot water production strategies are evaluated at 80, 609 and 657 kWh/1000 THB investment, respectively.  相似文献   

20.
Abstract

In this paper, a parametric analysis of two solar heating and cooling systems, one using an absorption heat pump and the other one using an adsorption heat pump, was performed. The systems under investigation were designed to satisfy the energy requirements of a residential building for space heating/cooling purposes and domestic hot water production. The system with the absorption heat pump was analyzed upon varying (i) the solar collectors’ area, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The system with the adsorption heat pump was evaluated upon varying (i) the inlet temperature of hot water supplied to the adsorption heat pump, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The analyses were performed using the dynamic simulation software TRNSYS in terms of primary energy consumption, global carbon dioxide equivalent emissions, and operating costs. The performance of the solar heating and cooling systems was compared with those associated with a conventional system from energy, environmental and economic points of views in order to evaluate the potential benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号