首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.  相似文献   

2.
To identify the cytochrome b5 residues responsible for the electrostatic interaction with NADH-cytochrome b5 reductase (b5R), we prepared and characterized the cytochrome b5 mutants in which Glu41, Glu42, Glu63, Asp70, and Glu73 were replaced by Ala, utilizing site-directed mutagenesis and the expression system for cytochrome b5 in Escherichia coli. Apparent Km values of the wild type b5R for Glu42Ala cytochrome b5 and Asp70Ala cytochrome b5 were approximately three-fold and six-fold higher than that for the wild type cytochrome b5, respectively, while the kcat values for those mutants were not remarkably affected. In contrast, Glu41Ala, Glu63Ala, and Glu73Ala cytochrome b5 showed almost the same kinetic properties as the wild type cytochrome b5. Furthermore, kinetic studies on combinations of the cytochrome b5 and b5R mutants suggested the interaction between Glu42 and Asp70 of cytochrome b5 and Lys125 and Lys41 of b5R, respectively, in the reaction.  相似文献   

3.
Random mutagenesis with ouabain selection has been used to comprehensively scan the extracellular and transmembrane domains of the alpha1 subunit of the sheep Na+/K+-ATPase for amino acid residues that alter ouabain sensitivity. The four random mutant libraries used in this study include all of the transmembrane and extracellular regions of the molecule as well as 75% of the cytoplasmic domains. Through an extensive number of HeLa cell transfections of these libraries and subsequent ouabain selection, 24 ouabain-resistant clones have been identified. All previously described amino acids that confer ouabain resistance were identified, confirming the completeness of this random mutagenesis screen. The amino acid substitutions that confer the greatest ouabain resistance, such as Gln111-->Arg, Asp121-->Gly, Asp121-->Glu, Asn122-->Asp, and Thr797-->Ala were identified more than once in this study. This extensive survey of the extracellular and transmembrane regions of the Na+/K+-ATPase molecule has identified two new regions of the molecule that affect ouabain sensitivity: the H4 and the H10 transmembrane regions. The new substitutions identified in this study are Leu330-->Gln, Ala331-->Gly, Thr338-->Ala, and Thr338-->Asn in the H4 transmembrane domain and Phe982-->Ser in the H10 transmembrane domain. These substitutions confer modest increases in the concentration of cardiac glycoside needed to produce 50% inhibition of activity (IC50 values), 3.1-7.9-fold difference. The results of this extensive screening of the Na+/K+-ATPase alpha1 subunit to identify amino acids residues that are important in ouabain sensitivity further supports our hypothesis that the H1-H2 and H4-H8 regions represent the major binding sites for the cardiac glycoside class of drugs.  相似文献   

4.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

5.
The interaction of ATP with the active site of hexokinase is unknown since the crystal structure of the hexokinase-ATP complex is unavailable. It was found that the ATP binding site of brain hexokinase is homologous to that of actin, heat shock protein hsc70, and glycerol kinase. On the basis of these similarities, the ATP molecule was positioned in the catalytic domain of human brain hexokinase, which was modeled from the X-ray structure of yeast hexokinase. Site-directed mutagenesis was performed to test the function of residues presumably involved in interaction with the tripolyphosphoryl moiety of ATP. Asp532, which is though to be involved in binding the Mg2+ ion of the MgATP2- complex, was mutated to Lys and Glu. The kcat values decreased 1000- and 200-fold, respectively, for the two mutants. Another residue, Thr680 was proposed to interact with the gamma-phosphoryl group of ATP through hydrogen bonds and was mutated to Val and Ser. The kcat value of the Thr680Val mutant decreased 2000-fold, whereas the kcat value of the Thr680Ser decreased only 2.5-fold, implying the importance of the hydroxyl group. The Km and dissociation constant values for either ATP or glucose of all the above mutants showed little or no change relative to the wild-type enzyme. The Ki values for the glucose 6-phosphate analogue 1,5-anhydroglucitol 6-phosphate, were the same as that of the wild-type enzyme, and the inhibition was reversed by inorganic phosphate (Pi) for all four mutants. The circular dichroism spectra of the mutants were the same as that of the wild-type enzyme. The results from the site-directed mutagenesis demonstrate that the presumed interactions of investigated residues with ATP are important for the stabilization of the transition state.  相似文献   

6.
Lactate dehydrogenase from the malarial parasite Plasmodium falciparum has many amino acid residues that are unique compared to any other known lactate dehydrogenase. This includes residues that define the substrate and cofactor binding sites. Nevertheless, parasite lactate dehydrogenase exhibits high specificity for pyruvic acid, even more restricted than the specificity of human lactate dehydrogenases M4 and H4. Parasite lactate dehydrogenase exhibits high catalytic efficiency in the reduction of pyruvate, kcat/Km = 9.0 x 10(8) min(-1) M(-1). Parasite lactate dehydrogenase also exhibits similar cofactor specificity to the human isoforms in the oxidation of L-lactate with NAD+ and with a series of NAD+ analogs, suggesting a similar cofactor binding environment in spite of the numerous amino acid differences. Parasite lactate dehydrogenase exhibits an enhanced kcat with the analog 3-acetylpyridine adenine dinucleotide (APAD+) whereas the human isoforms exhibit a lower kcat. This differential response to APAD+ provides the kinetic basis for the enzyme-based detection of malarial parasites. A series of inhibitors structurally related to the natural product gossypol were shown to be competitive inhibitors of the binding of NADH. Slight changes in structure produced marked changes in selectivity of inhibition of lactate dehydrogenase. 7-p-Trifluoromethylbenzyl-8-deoxyhemigossylic acid inhibited parasite lactate dehydrogenase, Ki = 0.2 microM, which was 65- and 400-fold tighter binding compared to the M4 and H4 isoforms of human lactate dehydrogenase. The results suggest that the cofactor site of parasite lactate dehydrogenase may be a potential target for structure-based drug design.  相似文献   

7.
Site-directed mutagenesis and assay of Rb+ and Tl+ occlusion in recombinant Na,K-ATPase from yeast were combined to establish structure-function relationships of amino acid side chains involved in high-affinity occlusion of K+ in the E2[2K] form. The wild-type yeast enzyme was capable of occluding 2 Rb+ or Tl+ ions/ouabain binding site or alpha 1 beta 1 unit with high apparent affinity (Kd(Tl+) = 7 +/- 2 microM), like the purified Na,K-ATPase from pig kidney. Mutations of Glu327(Gln,Asp), Asp804(Asn, Glu), Asp808(Asn, Glu) and Glu779(Asp) abolished high-affinity occlusion of Rb+ or Tl+ ions. The substitution of Glu779 for Gln reduced the occlusion capacity to 1 Tl+ ion/alpha 1 beta 1-unit with a 3-fold decrease of the apparent affinity for the ion (Kd(Tl+) = 24 +/- 8 microM). These effects on occlusion were closely correlated to effects of the mutations on K0.5(K+) for K+ displacement of ATP binding. Each of the four carboxylate residues Glu327, Glu779, and Asp804 or Asp808 in transmembrane segments 4, 5, and 6 is therefore essential for high-affinity occlusion of K+ in the E2[2K] form. These residues either may engage directly in cation coordination or they may be important for formation or stability of the occlusion cavity.  相似文献   

8.
Many Oriental people possess a liver mitochondrial aldehyde dehydrogenase where glutamate at position 487 has been replaced by a lysine, and they have very low levels of mitochondrial aldehyde dehydrogenase activity. To investigate the cause of the lack of activity of this aldehyde dehydrogenase, we mutated residue 487 of rat and human liver mitochondrial aldehyde dehydrogenase to a lysine and expressed the mutant and native enzyme forms in Escherichia coli. Both rat and human recombinant aldehyde dehydrogenases showed the same molecular and kinetic properties as the enzyme isolated from liver mitochondria. The E487K mutants were found to be active but possessed altered kinetic properties when compared to the glutamate enzyme. The Km for NAD+ at pH 7.4 increased more than 150-fold, whereas kcat decreased 2-10-fold with respect to the recombinant native enzymes. Detailed steady-state kinetic analysis showed that the binding of NAD+ to the mutant enzyme was impaired, and it could be calculated that this resulted in a decreased nucleophilicity of the active site cysteine residue. The rate-limiting step for the rat E487K mutant was also different from that of the recombinant rat liver aldehyde dehydrogenase in that no pre-steady-state burst of NADH formation was found with the mutant enzyme. Both the rat native enzyme and the E487K mutant oxidized chloroacetaldehyde twice as fast as acetaldehyde, indicating that the rate-limiting step was not hydride transfer or coenzyme dissociation but depended upon nucleophilic attack. Each enzyme form showed a 2-fold activation upon the addition of Mg2+ ions. Substituting a glutamine for the glutamate did not grossly affect the properties of the enzyme. Glutamate 487 may interact directly with the positive nicotinamide ring of NAD+ for the Ki of NADH was the same in the lysine enzyme as it was in the glutamate form. Because of the altered NAD+ binding properties and kcat of the E487K variant, it is assumed that people possessing this form will not have a functional mitochondrial aldehyde dehydrogenase.  相似文献   

9.
Carboxypeptidase Y is a serine carboxypeptidase isolated from Saccharomyces cerevisiae with a preference for C-terminal hydrophobic amino acid residues. In order to alter the inherent substrate specificity of CPD-Y into one for basic amino acid residues in P'1, we have introduced Asp and/or Glu residues at a number of selected positions within the S'1 binding site. The effects of these substitutions on the substrate specificity, pH dependence and protein stability have been evaluated. The results presented here demonstrate that it is possible to obtain significant changes in the substrate preference by introducing charged amino acids into the framework provided by an enzyme with a quite different specificity. The introduced acidic amino acid residues provide a marked pH dependence of the (kcat/Km)FA-A-R-OH/(kcat/Km)FA-A-L-OH ratio. The change in stability upon introduction of Asp/Glu residues can be correlated to the difference in the mean buried surface area between the substituted and the substituting amino acid. Thus, the effects of acidic amino acid residues on the protein stability depend upon whether the introduced amino acid protrudes from the solvent accessible surface as defined by the surrounding residues in the wild type enzyme or is submerged below.  相似文献   

10.
The functional roles of Asp804 and Asp808, located in the sixth transmembrane segment of the Na,K-ATPase alpha subunit, were examined. Nonconservative replacement of these residues yielded enzymes unable to support cell viability. Only the conservative substitution, Ala808 --> Glu, was able to maintain the essential cation gradients (Van Huysse, J. W., Kuntzweiler, T. A., and Lingrel, J. B (1996) FEBS Lett. 389, 179-185). Asp804 and Asp808 were replaced by Ala, Asn, and Glu in the sheep alpha1 subunit and expressed in a mouse cell line where [3H]ouabain binding was utilized to probe the exogenous proteins. All of the heterologous proteins were targeted into the plasma membrane, bound ouabain and nucleotides, and adopted E1Na, E1ATP, and E2P conformations. K+ competition of ouabain binding to sheep alpha1 and Asp808 --> Glu enzymes displayed IC50 values of 4.11 mM (nHill = 1.4) and 23.8 mM (nHill = 1.6), respectively. All other substituted proteins lacked this K+-ouabain antagonism, e.g. 150 mM KCl did not inhibit ouabain binding. Na+ antagonized ouabain binding to all the expressed isoforms, however, the proteins carrying nonconservative substitutions displayed reduced Hill coefficients (nHill 相似文献   

11.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

12.
Glu126 and Arg144 in the lactose permease are indispensable for substrate binding and probably form a charge-pair [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807]. Mutants with Glu126-->Ala or Arg144-->Ala do not bind ligand or catalyze lactose accumulation, efflux, exchange, downhill lactose translocation, or lactose-induced H+ influx. In contrast, mutants with conservative mutations (Glu126-->Asp or Arg144-->Lys) exhibit drastically different phenotypes. Arg144-->Lys permease accumulates lactose slowly to low levels, but does not bind ligand or catalyze equilibrium exchange, efflux, or lactose-induced H+ influx. In contrast, Glu126-->Asp permease catalyzes lactose accumulation and lactose-induced H+ influx to wild-type levels, but at significantly lower rates. Surprisingly, however, no significant exchange or efflux activity is observed. Glu126-->Asp permease exhibits about a 6-fold increase in the Km for active transport relative to wild-type permease with a comparable Vmax. Direct binding assays using flow dialysis demonstrate that mutant Glu126-->Asp binds p-nitrophenyl-alpha,D-galactopyranoside. Indirect binding assays utilizing substrate protection against [14C]-N-ethylmaleimide labeling of single-Cys148 permease reveal an apparent Kd of 3-5 mM for lactose and 15-20 microM for beta, D-galactopyranosyl-1-thio-beta,D-galactopyranoside (TDG). The affinity of Glu126-->Asp/Cys148 permease for lactose is markedly decreased (Kd > 80 mM), while TDG affinity is altered to a much lesser extent (Kd ca. 80 microM). The results extend the conclusion that a carboxylate at position 126 and a guanidinium group at position 144 are irreplaceable for substrate binding and support the idea that Arg144 plays a major role in substrate specificity.  相似文献   

13.
The substrate recognition determinants of Ca2+-calmodulin-dependent protein kinase (CaMK) IV and CaMKIIalpha were investigated using peptide substrates modeled on the amino acid sequence encompassing Ser-9 of synapsin I. For both kinases, hydrophobic residues (Leu or Phe) at the -5 position, are well tolerated, whereas non-hydrophobic residues (Arg, Ala, or Asp) decrease Vmax/Km by 55- to >4000-fold. At the -3 position, substitution of Ala for Arg leads to decreases of 99- and 343- fold in Vmax/Km for CaMKIV and CaMKIIalpha, respectively. For both kinases, the nature of the residues occupying the -4, -1, and + 4 positions exerts relatively little influence on phosphorylation kinetics. CaMKIV and CaMKIIalpha respond differently to substitutions at the -2 and +1 positions. Substitution of Arg at the -2 position with non-basic residues (Gln or Ala) leads to 6-fold decreases in Vmax/Km for CaMKIV, but 17-28-fold increases for CaMKIIalpha. Additionally, peptides containing Leu, Asp, or Ala at the +1 position are phosphorylated with similar efficiencies by CaMKIV, whereas the Leu-substituted peptide is preferred by CaMKIIalpha (by a factor of 5.8-9.7-fold). Thus, CaMKIV and CaMKIIalpha preferentially phosphorylate substrates with the motifs: Hyd-X-Arg-X-X-Ser*/Thr*, and Hyd-X-Arg-NB-X-Ser*/Thr*-Hyd, respectively, where Hyd represents a hydrophobic, X any, and NB a non-basic amino acid residue. The different specificities of the two kinases may contribute to their targeting to distinct physiological substrates during Ca2+-dependent cellular events.  相似文献   

14.
The known mammalian 3':5'-cyclic nucleotide phosphodiesterases (PDEs) contain a conserved region located toward the carboxyl terminus, which constitutes a catalytic domain. To identify amino acids that are important for catalysis, we introduced substitutions at 23 conserved residues within the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE; PDE5). Wild-type and mutant proteins were compared with respect to Km for cGMP, kcat, and IC50 for zaprinast. The most dramatic decrease in kcat was seen with H643A and D754A mutants with the decrease in free energy of binding (DeltaDeltaGT) being about 4.5 kcal/mol for each, which is within the range predicted for loss of a hydrogen bond involving a charged residue. His643 and Asp754 are conserved in all known PDEs and are strong candidates to be directly involved in catalysis. Substitutions of His603, His607, His647, Glu672, and Asp714 also produced marked changes in kcat, and these residues are likely to be important for efficient catalysis. The Y602A and E775A mutants exhibited the most dramatic increases in Km for cGMP, with calculated DeltaDeltaGT of 2.9 and 2.8 kcal/mol, respectively, that these two residues are important for cGMP binding in the catalytic site. Zaprinast is a potent competitive inhibitor of cGB-PDE, but the key residues for its binding differ significantly from those that bind cGMP.  相似文献   

15.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP). The reaction proceeds with concomitant conversion of NAD+ to NADH and is the rate-limiting step in the de novo biosynthesis of guanosine nucleotides. IMPDH is a target for numerous chemotherapeutic agents. The conformations of enzyme-bound substrates, enzyme-bound products and enzyme-bound ligands in general, are of interest for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. Although several of the chemotherapeutic inhibitors of IMPDH are NAD+ or NADH analogues, no structural data for IMPDH-bound NAD+ (or NADH) are available. In the present work, we have used transferred nuclear Overhauser effect spectroscopy (TRNOESY) to determine the conformation of NADH bound to the active site of human type II IMPDH (IMPDH-h2). The inter-proton distances determined from TRNOESY data indicate that NADH binds to the enzyme active site in an overall extended conformation. The adenosine moiety and the nicotinamide riboside moiety are both in the anti conformation about the glycosidic bond, and both ribose rings are in approximately C4'-exo conformations. The nicotinamide amide group was found to be in a cis conformation. The anti conformation of the nicotinamide riboside moiety is in accord with the preferred conformations of several potent and selective dinucleotide inhibitors and is consistent with that implied by the stereospecificity of hydride transfer in the enzymatic reaction. The implications of this conformation for the catalytic mechanism of IMPDH-h2 are discussed.  相似文献   

16.
Site-directed mutagenesis was used to identify the veratryl alcohol binding site of lignin peroxidase. The cDNA encoding isozyme H8 was mutated at Glu146 to both an Ala and a Ser residue. The H8 polypeptide was produced by E. coli as inclusion bodies and refolded to yield active enzyme. The wild type recombinant enzyme and the mutants were purified to homogeneity and characterized by steady state kinetics. The kcat is decreased for both mutants of Glu146. The reactivity of mutants (kcat/Km) toward H2O2 were not affected. In contrast, the kcat/Km of the mutants for veratryl alcohol were decreased by at least half. The oxidation of guaiacol by these mutants were more significantly affected. These results collectively suggest that E146 plays a central role in the binding of veratryl alcohol by lignin peroxidase.  相似文献   

17.
The significance of subunit interface residues Arg49 and Lys50 in the function of porcine liver fructose-1,6-bisphosphatase was explored by site-directed mutagenesis, initial rate kinetics, and circular dichroism spectroscopy. The Lys50 --> Met mutant had kinetic properties similar to the wild-type enzyme but was more thermostable. Mutants Arg49 --> Leu, Arg49 --> Asp, Arg49 --> Cys were less thermostable than the wild-type enzyme yet exhibited wild-type values for kcat and Km. The Ki for the competitive inhibitor fructose 2,6-bisphosphate increased 3- and 5-fold in Arg49 --> Leu and Arg49 --> Asp, respectively. The Ka for Mg2+ increased 4-8-fold for the Arg49 mutants, with no alteration in the cooperativity of Mg2+ binding. Position 49 mutants had 4-10-fold lower AMP affinity. Most significantly, the mechanism of AMP inhibition with respect to fructose 1,6-bisphosphate changed from noncompetitive (wild-type enzyme) to competitive (Arg49 --> Leu and Arg49 --> Asp mutants) and to uncompetitive (Arg49 --> Cys mutant). In addition, AMP cooperativity was absent in the Arg49 mutants. The R and T-state circular dichroism spectra of the position 49 mutants were identical and superimposable on only the R-state spectrum of the wild-type enzyme. Changes from noncompetitive to competitive inhibition by AMP can be accommodated within the framework of a steady-state Random Bi Bi mechanism. The appearance of uncompetitive inhibition, however, suggests that a more complex mechanism may be necessary to account for the kinetic properties of the enzyme.  相似文献   

18.
To provide new insights into ligand/A1 adenosine receptor (A1 AR) interactions, site-directed mutagenesis was used to test the role of several residues in the first four transmembrane (TM) domains of the human A1 AR. Based on multiple sequence analysis of all known ARs, both acidic (glutamic acid and aspartic acid) and polar hydroxy (serine and threonine) amino acids were identified that could potentially play a role in binding adenosine. Glu16 (TM1), Asp55 (TM2), Ser93 and Ser94 (TM3), Ser135 (TM4), and Thr 141 (TM4) were identified in all ARs, and Ser6 and Ser23 (TM1) were identified in all A1 ARs. To test the role of these residues, each was individually mutated to alanine. When Ala6, Ala23, Ala50, Ala93, Ala135, and Ala141 constructs were tested, affinities for [3H]2-chloro-N6-cyclopentyladenosine (CCPA) and [3H]1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were similar to those seen for the wild-type receptor. After conversion of Glu16 to Ala16, the affinity for [3H]CCPA and other agonists fell 10-100-fold, whereas the affinity for [3H]DPCPX and other antagonists was not affected. After conversion of Asp55 to Ala55, the affinity for [3H]CCPA and other agonists increased < or = 100-fold, whereas the affinity for [3H]DPCPX and other antagonists was not affected. Studies of the Ala55 construct also revealed that Asp55 is responsible for allosteric regulation of binding by sodium because the affinity for [3H]CCPA did not change over broad ranges of sodium concentrations. When Ser94 was converted to Ala94, A1 AR immunoreactivity was present on stable cell lines; however, functional binding sites could not be detected. When Ser94 was converted to Thr94, the affinity for some xanthine antagonists fell. These data show that Glu16 in TM1 and Asp55 in TM2 play important roles in agonist/A1 AR interactions and show that Asp55 is responsible for allosteric regulation of ligand/A1 AR binding by sodium. We also identify Ser94 as an important site for ligand binding.  相似文献   

19.
The carbohydrate-binding cleft of Bacillus licheniformis 1,3-1, 4-beta-D-glucan 4-glucanohydrolase is partially covered by the surface loop between residues 51 and 67, which is linked to beta-strand-(87-95) of the minor beta-sheet III of the protein core by a single disulfide bond at Cys61-Cys90. An alanine scanning mutagenesis approach has been applied to analyze the role of loop residues from Asp51 to Arg64 in substrate binding and stability by means of equilibrium urea denaturation, enzyme thermotolerance, and kinetics. The DeltaDeltaGU between oxidized and reduced forms is approximately constant for all mutants, with a contribution of 5.3 +/- 0.2 kcal.mol-1 for the disulfide bridge to protein stability. A good correlation is observed between DeltaGU values by reversible unfolding and enzyme thermotolerance. The N57A mutant, however, is more thermotolerant than the wild-type enzyme, whereas it is slightly less stable to reversible urea denaturation. Mutants with a <2-fold increase in Km correspond to mutations at residues not involved in substrate binding, for which the reduction in catalytic efficiency (kcat/Km) is proportional to the loss of stability relative to the wild-type enzyme. Y53A, N55A, F59A, and W63A, on the other hand, show a pronounced effect on catalytic efficiency, with Km > 2-fold and kcat < 5% of the wild-type values. These mutated residues are directly involved in substrate binding or in hydrophobic packing of the loop. Interestingly, the mutation M58A yields an enzyme that is more active than the wild-type enzyme (7-fold increase in kcat), but it is slightly less stable.  相似文献   

20.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanine nucleotide biosynthesis. IMPDH converts IMP to xanthosine 5'-monophosphate with concomitant conversion of NAD+ to NADH. All IMPDHs characterized to date contain a 130-residue "subdomain" that extends from an N-terminal loop of the alpha/beta barrel domain. The role of this subdomain is unknown. An IMPDH homolog has been cloned from Borrelia burgdorferi, the causative agent of Lyme disease (Margolis, N., Hogan, D., Tilly, K., and Rosa, P. A. (1994) J. Bacteriol. 176, 6427-6432). This homolog has replaced the subdomain with a 50-residue segment of unrelated sequence. We have expressed and characterized the B. burgdorferi IMPDH homolog. This protein has IMPDH activity, which unequivocally demonstrates that the subdomain is not required for catalytic activity. The monovalent cation and dinucleotide binding sites of B. burgdorferi IMPDH are significantly different from those of human IMPDH. Therefore, these sites are targets for the design of specific inhibitors for B. burgdorferi IMPDH. Such inhibitors might be new treatments for Lyme disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号