首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的监测福建省4类公共场所空气颗粒物(PM_(10)、PM_(2.5))室内外浓度,了解从业人员健康状况,探讨颗粒物对人群的健康影响。方法采用横断面调查法,对福建省4个设区市的168家公共场所(含宾馆/酒店、理发店、美发店及候车室4类场所)的环境进行现场检测,调查从业人员1 651人,计算症状/体征自报率并分析影响因素。结果从业人员眼睛、呼吸系统及皮肤的症状/体征自报率分别为40.4%(667人)、42.1%(695人)及24.7%(408人);现场环境检测中,PM_(10)、PM_(2.5)室内浓度中位数分别为67μg/m~3、36μg/m~3,室外分别为70μg/m~3、38μg/m~3,浓度差中位数分别为0(23~521)μg/m~3、-1(11~236)μg/m~3,PM_(10)浓度室内大于室外,PM_(2.5)室外大于室内(Zc=4.68、3.40,P均0.01);从业人员健康影响因素logistic回归分析显示,男性、工龄5~9年及文化程度小学危险度相对较低;饮酒及高PM_(10)、PM_(2.5)浓度是健康的危险因素。结论颗粒物对人体健康影响的非特异性,可能导致环境污染物对人群健康的影响被低估,应加强公共场所环境管理,以保护从业人员健康。  相似文献   

2.
目的了解中山市室内新装修场所污染状况及颗粒物的来源,为室内空气污染的防控提供依据。方法选择2013—2014年中山市35间室内新装修场所作为研究对象,对其室内外PM_(2.5)和PM_(10)、室内甲醛、苯、甲苯、二甲苯和总挥发性有机化合物(TVOC)进行现场监测,对数据进行统计分析。结果新装修场所室外PM_(2.5)和PM_(10)平均质量浓度均大于室内;室内甲醛质量浓度为(0.103±0.110)mg/m~3,苯(0.013±0.002)mg/m~3,甲苯(0.051±0.126)mg/m~3,二甲苯(0.054±0.142)mg/m~3,TVOC(0.082±0.134)mg/m~3;PM_(2.5)的室内/室外(I/O)平均比值为0.996(0.307~1.769),PM_(10)为0.941(0.355~2.182);室内PM_(2.5)与PM_(10)存在显著正相关关系(r=0.933,P=0.000);室外PM_(2.5)与PM_(10)存在显著正相关关系(r=0.988,P=0.000)。结论中山市室内新装修场所污染严重,室内颗粒物的污染主要来源于室外。  相似文献   

3.
目的了解普通居民室内外PM_(2.5)污染情况,探讨室内外PM_(2.5)关系及影响室内PM_(2.5)浓度的因素。方法于2018年9月—2019年1月从济南市历下区甸柳社区选择49户普通居民住宅采用RPPM_(2.5)系统监测3 d室内PM_(2.5)浓度、温度和相对湿度,通过调查问卷收集监测期间室内人员窗户开关、烹饪、空气净化器使用等信息。每次调查的时间间隔为30 d,共开展5次调查。从距离调查点位最近的环保监测站和气象监测站获取同期的室外空气PM_(2.5)浓度以及环境温度、相对湿度,利用混合效应模型分析室内PM_(2.5)浓度的影响因素。结果 2018年9月—2019年1月的5次调查显示室内PM_(2.5)浓度的几何均数分别为64.96、38.29、57.4、50.39和59.60μg/m~3,室外空气PM_(2.5)浓度几何均数分别为40.21、34.65、58.60、67.89和83.14μg/m3,室内外PM_(2.5)浓度呈正相关(rs=0.41,P0.001)。秋季室内外PM_(2.5)浓度比值(I/O)为1.17(P_(25)~P_(75):0.96~1.55),冬季I/O值为0.77(P25~P75:0.54~0.93),秋季I/O值明显高于冬季。混合效应模型分析结果显示,室外空气PM_(2.5)浓度(β=2.84×10~(-3),P0.001)、室内外相对湿度差绝对值(β=-0.02,P0.001)、室外风速(β=-0.87,P0.001)、空气净化器使用(β=-0.14,P=0.04)和室内除尘(β=0.19,P0.001)是影响室内PM_(2.5)水平的重要因素。混合效应模型的边际R~2(R_m~2)为0.55。结论济南市普通居民住宅室内外PM_(2.5)浓度关系在秋季和冬季存在明显的季节性差别,室外空气PM_(2.5)浓度、室内外相对湿度差绝对值、室外风速、空气净化器使用和室内除尘是影响室内PM_(2.5)浓度的重要因素。  相似文献   

4.
目的探讨冬季室内外PM_(2.5)污染水平对慢性阻塞性肺疾病(简称慢阻肺)患者呼出气炎症指标的影响。方法以18名某三甲医院诊断的稳定期慢阻肺患者为研究对象,于2014年1月2日—2月18日,对研究对象室内PM_(2.5)水平进行实时监测,同步收集研究对象居室附近北京市固定监测点PM_(2.5)、气温和相对湿度数据,并采集研究对象呼出气一氧化氮(e NO)和呼出气硫化氢(e H2S)样品,采用Spearman相关分析和多元线性回归分析探讨室内外PM_(2.5)对研究对象呼出气指标的影响。结果调查地区冬季室内、外PM_(2.5)污染水平较高,x±s分别为(94.09±46.87)μg/m3和(119.27±54.78)μg/m3。室外PM_(2.5)暴露与e NO呈正相关关系(rs=0.311,P0.05),PM_(2.5)每上升1个四分位数间距(74.80μg/m3),可使e NO增加13.13μg/m3(P0.05),控制室外气温和相对湿度后,该相关关系仍然存在。未观察到室内PM_(2.5)与e NO以及室内、外PM_(2.5)与e H2S的相关关系。结论本次调查地区的冬季室内、外PM_(2.5)污染严重,室外PM_(2.5)可对慢阻肺患者e NO产生影响。  相似文献   

5.
目的研究自然通风条件下大规模人群的住宅内PM_(2.5)浓度水平,探讨PM_(2.5)浓度的室内外关系,为评估室内PM_(2.5)暴露提供重要数据支撑和新的研究思路。方法于2013年12月1日—2014年2月28日(2013—2014冬季)在北京市某区开展大规模人群的时间-活动模式和空气污染暴露影响因素调查,基于调查数据及PM_(2.5)空气动力学特性建立住宅内PM_(2.5)的质量平衡模型,利用环境监测站点PM_(2.5)监测数据模拟住宅内PM_(2.5)浓度,计算室内外PM_(2.5)浓度比(I/O),并探讨PM_(2.5)室内外关系。结果本研究1 092个样本2013—2014冬季住宅内PM_(2.5)浓度范围为26~167μg/m~3,PM_(2.5)浓度的中位数为73μg/m~3,四分位数间距为34μg/m~3。室外PM_(2.5)浓度范围分别为0~33μg/m~3、34~65μg/m~3、66~129μg/m~3、≥130μg/m~3时,PM_(2.5)浓度I/O分别为1.75、1.05、0.76和0.63;随着室外PM_(2.5)浓度的增加,I/O呈减小趋势,且分布趋于集中。结论基于大规模人群的时间-活动模式和空气污染暴露影响因素调查建立质量平衡模型,可实现大规模人群室内PM_(2.5)浓度的连续模拟。  相似文献   

6.
目的定量分析典型居民住宅室内、室外来源PM_(2.5)对室内PM_(2.5)污染的贡献,探讨影响室内来源主要因素。方法以北京市55户不同类型居民住宅为调查对象,分别在采暖季(45户)和非采暖季(43户)开展连续7 d的室内外PM_(2.5)同期监测,分别采用重量法和X射线荧光光谱法(ED-XRF)分析PM_(2.5)质量浓度及PM_(2.5)中硫元素含量;利用硫元素比值法估算住宅PM_(2.5)室内外渗透系数,并根据质量平衡方程计算室内外来源的PM_(2.5)对室内浓度的贡献;利用问卷调查收集住宅一般状况和居民室内活动状况信息,并采用多重线性回归模型探讨影响室内来源PM_(2.5)浓度因素。结果非采暖季和采暖季室内PM_(2.5)中来源于室外的比例分别为(81±21)%(M=83%)和(75±24)%(M=77%),差异无统计学意义(P0.05);非采暖季来源于室内源的PM_(2.5)浓度[(12.8±16.4)μg/m~3,M=8.4μg/m~3)]低于采暖季[(22.2±32.9)μg/m~3,M=10.4μg/m~3],差异无统计学意义(P0.05);多重线性回归分析结果表明,非采暖季室内吸烟(β=0.199)和开窗时间(β=-0.073)是造成调查对象室内来源PM_(2.5)浓度差别的重要因素,可以解释总变异的27%,而在采暖季仅发现室内吸烟(β=0.280)可以造成室内来源PM_(2.5)浓度差别,可以解释总变异的25%。结论室外空气是室内PM_(2.5)污染的主要来源;减少室内吸烟和开窗通风可以有效降低对人群对室内来源PM_(2.5)的暴露。  相似文献   

7.
目的了解不同类型公共场所室内PM_(2.5)污染情况,探讨室内外PM_(2.5)关系及影响室内PM_(2.5)浓度的因素。方法于2015年7—8月和11—12月以南京市4类32家公共场所[商场(超市)、影院、餐厅、医院]为研究对象,采用重量法同时测定室内外PM_(2.5)浓度,使用温湿度计实时记录室内外温湿度,通过调查问卷收集采样期间室内人员吸烟、门窗开关、新风系统使用等信息,利用多重线性回归分析室内PM_(2.5)浓度的影响因素。结果夏季室内外PM_(2.5)浓度中位数分别为44μg/m~3(范围:13~158μg/m~3)和36μg/m~3(范围:20~71μg/m~3),均显著低于冬季值[117μg/m~3(范围:39~341μg/m~3)和100μg/m~3(范围:53~229μg/m~3)]。在夏季,餐厅的室内PM_(2.5)浓度显著高于影院和商场(超市)(P0.05),全部调查对象室内外PM_(2.5)浓度比值(I/O值)中位数为1.1(范围:0.39~5.12),其中餐厅、商场(超市)、医院和影院I/O值大于1的比例分别为90%(9/10)、40%(4/10)、80%(4/5)和0%(0/5)。但冬季不同类型公共场所室内PM_(2.5)浓度差异无统计学意义(P0.05);全部调查对象I/O值中位数为0.92(范围:0.59~1.89),显著低于夏季(P=0.029),其中餐厅、商场(超市)、医院和影院I/O值大于1的比例分别为60%(6/10)、40%(4/10)、40%(2/5)和0%(0/5)。多重线性回归分析结果显示,影响夏季公共场所室内PM_(2.5)浓度主要因素为室内人员吸烟(β=0.548,P0.001)和新风系统使用(β=-0.513,P0.001),回归方程的决定系数(R~2)为0.420,而影响冬季室内PM_(2.5)浓度的主要因素为室外PM_(2.5)浓度(β=0.984,P0.001)和室内外相对湿度差的绝对值(β=-0.027,P0.001),回归方程的决定系数(R~2)为0.814。结论南京市典型公共场所室内PM_(2.5)污染状况和室内外PM_(2.5)浓度关系均存在季节性差别,室外PM_(2.5)浓度、室内人员吸烟、新风系统使用和通风换气等是影响室内PM_(2.5)浓度重要因素。  相似文献   

8.
目的评价人员活动和空气净化器对支气管镜室空气微生物及颗粒物的影响。方法依照支气管镜室有无人员活动和空气净化器,将实验分成四组:动态无净化组、动态净化组、静态无净化组、静态净化组,在五个不同时间点(0、0.5、1、2、4 h)对室内空气进行采样和分析,用浮游菌法采集空气中的微生物并培养、计数,用DT-9881M激光尘埃粒子计数器检测颗粒物浓度,统计方法采用析因设计的方差分析。结果动态无净化组的细菌、真菌、总微生物(细菌+真菌)、PM_(2.5)和PM_(2.5~10.0)菌落数/浓度分别为(113.53±7.78)CFU/m~3、(89.67±7.17)CFU/m~3、(203.20±10.92)CFU/m~3、(86 557.20±4 158.29)个/m~3和(659.69±38.91)个/m~3,静态无净化组分别为(84.33±3.65)CFU/m~3、(65.00±2.65)CFU/m~3、(149.33±4.98)CFU/m~3、(45 812.64±1 279.61)个/m~3和(189.15±4.64)个/m~3,动态净化组分别为(84.80±8.08)CFU/m~3、(90.40±5.50)CFU/m~3、(175.20±9.22)CFU/m~3、(49 336.38±2 039.16)个/m~3和(218.36±7.02)个/m~3,静态净化组分别为(67.80±5.63)CFU/m~3、(38.27±3.70)CFU/m~3、(106.07±6.76)CFU/m~3、(29 772.53±2 212.93)个/m~3和(124.80±7.16)个/m~3,细菌、总微生物、PM_(2.5)、PM_(2.5~10.0)菌落数/浓度动态组高于静态组,无净化组高于净化组(均P0.05),真菌菌落数动态无净化组高于静态无净化组,静态净化组低于静态无净化组(均P0.05),动态净化组与无净化组间无明显差异(P=0.936)。结论人员活动增加支管镜室空气微生物和颗粒物的菌落数/浓度,空气净化器能降低支气管镜室空气中的细菌、总微生物和颗粒物的菌落数/浓度。  相似文献   

9.
目的探讨居室内PM_(2.5)污染特征及其影响因素。方法于2015年4—5月,选取北京城区和郊区24户住宅,对室内和室外空气中PM_(2.5)进行检测和数据采集,并对居室特征及人员时间活动情况进行问卷调查。结果室内外PM_(2.5)浓度日均值分别为(75.5±59.4)、(68.7±59.0)μg/m~3,二者呈正相关(P0.05)。室内PM_(2.5)浓度与室内外温差、室外风速呈负相关(P0.05),与室外相对湿度呈正相关(P0.05)。不同厨房类型、窗户类型、楼层、朝向的居室PM2.5浓度的室内/室外比值(I/O值)差异有统计学意义(P0.05),开放式厨房、推拉窗、低楼层、东西朝向的居室PM_(2.5)的I/O值更高。静坐、走动、运动、炒(炸)、炖(熬)、手动打扫时段的I/O值均高于睡觉时,差异有统计学意义(P0.05);无人、吸烟、蒸(焖)、机械打扫时段的I/O值与睡觉时段无明显差异(P0.05)。结论检测时间内室内外PM_(2.5)污染严重,室外环境及气象条件、居室特征、室内人员活动均可能影响室内PM2.5浓度。  相似文献   

10.
为探讨火车站室内环境质量,于2017年2月对长江三角洲地区6个火车站(4个新建火车站、2个旧式火车站)内不同位置PM_(10)及PM_(2.5)浓度进行检测。结果显示,新建火车站室内PM_(10)的浓度范围为98.5~220.4μg/m~3,PM_(2.5)的浓度范围为46.0~84.6μg/m~3;楼梯和电梯附近采样点设有排气扇,大气颗粒物浓度最低;所测6个车站的室内外颗粒物浓度比值(I/O)均小于1。提示新建火车站空气质量优于旧式火车站,通风设备有利于减弱PM_(10)及PM_(2.5)浓度,且室内空气质量优于室外。  相似文献   

11.
目的了解星级宾馆室内颗粒物污染水平,分析室内颗粒物浓度的影响因素。方法选择北京市西城区四、五星级宾馆共6家,于2014年春、夏、秋、冬季分别进行1次采样,监测室内外空气PM_(10)、PM_(2.5)浓度。结果调查的星级宾馆客房室内空气PM_(10)、PM_(2.5)平均浓度均低于标准限值。室外大气颗粒物浓度高于室内,PM_(2.5)在PM_(10)中所占比例低于室内,差异有统计学意义(P0.05)。不同楼层客房的空气颗粒物浓度差异无统计学意义(P0.05)。不同季节客房的室内PM_(10)、PM_(2.5)浓度不同,秋季污染物浓度较高;开窗后客房室内颗粒物浓度高于开窗前,差异均有统计学意义(P0.05)。结论本次调查的宾馆室内颗粒物浓度与楼层无关,秋季污染物浓度高于其他季节。在室内无污染源的情况下,室内颗粒物污染主要来源于室外。  相似文献   

12.
为探讨开关窗通风对宿舍室内PM_(2.5)浓度的影响。于2015年11—12月选取某高校31个有代表性的学生宿舍,使用颗粒物检测仪进行PM_(2.5)浓度的检测。观察关窗密闭、开窗通风和通风后密闭对宿舍室内PM_(2.5)浓度的影响。结果显示通风前密闭状态下PM_(2.5)平均浓度为176.28μg/m~3,通风状态下为183.72μg/m~3,通风后密闭状态下为176.28μg/m~3,室外为187.00μg/m~3。通风状态和通风前后密闭状态的宿舍室内PM_(2.5)浓度差异有统计学意义(P0.05);无论通风与否,室内外PM_(2.5)浓度具有高度相关性(rs0.854 8,P0.000 1)。提示室外PM_(2.5)直接影响宿舍室内PM_(2.5)的浓度,关窗并不能有效降低室内PM_(2.5)的浓度,开窗后密闭可降低通风后室内PM_(2.5)的浓度。  相似文献   

13.
[目的]了解北京市采暖期住宅室内外颗粒物浓度,并评估家用净化器对室内颗粒物的净化效果。[方法]2015年11月—2016年1月间,选择北京市某区15户住宅,采用粉尘仪实时监测每户在开启家用型高效颗粒物空气(HEPA)净化器前后各24 h室内外PM_(2.5)和PM_(10)质量浓度,并在净化器开启后采用多通道仪监测室内PM_(2.5)、PM_(10)及其他多种粒径颗粒物浓度;采用室内外颗粒物浓度比值(I/O值)描述室内颗粒物相对室外的污染水平,并用配对样本的Wilcoxon符号秩检验比较净化前后I/O值差异;采用颗粒物清除率评价短时净化效率,并采用Friedman M检验和Wilcoxon符号秩检验进行比较。[结果]各户净化器运行前后的日均PM_(2.5)浓度的I/O值中位数及四分位数间距分别为1.79(2.63)和0.46(0.49),PM_(10)的I/O值中位数及四分位数间距分别为1.44(1.65)和0.40(0.46)。PM_(2.5)和PM_(10)净化前后的I/O值差异均有统计学意义(P0.05)。净化器开始运行到室内颗粒物浓度达稳定水平的时间约为3 h,对空气动力学直径≤0.3μm的颗粒物平均清除率为59.03%;0.3~0.5μm的颗粒物为63.08%;0.5~1μm的颗粒物为67.00%;PM_(2.5)为63.60%;PM_(10)为71.91%。不同粒径颗粒物的清除率差异具有统计学意义(P0.05)。[结论]家用型HEPA净化器可降低室内PM_(10)、PM_(2.5)及更小粒径颗粒物浓度,在3 h内降低不同粒径颗粒物浓度60%以上,其对不同粒径颗粒物的去除效果有所不同。  相似文献   

14.
目的通过对兰州市空气中PM_(2.5)监测成分进行研究分析,发现主要污染成分和污染季节,为相关部门制定防控措施提供参考依据。方法 2015年分别在兰州市城关区和西固区2个监测点采集PM_(2.5)颗粒物样品,检测PM_(2.5)及10种元素的含量,并分析季节性趋势。结果城关区和西固区PM_(2.5)颗粒物中铅、镉及锰的含量有统计学差异,且城关区高于西固区;城关区四个季节的PM_(2.5)的含量有统计学差异(χ~2=18.406,P0.001),城关区春季PM_(2.5)的含量最高,为0.12 mg/m~3,秋季最低,为0.07 mg/m~3;西固区四个季节的PM_(2.5)的含量有统计学差异(χ~2=30.0,P0.001),西固区冬季PM_(2.5)的含量最高,为0.11 mg/m~3,夏季最低,为0.05 mg/m~3。结论 2015年兰州市城关区和西固区PM_(2.5)颗粒物及其元素污染水平有差别,需要重视不同季节大气污染,制定相应的污染防控措施。  相似文献   

15.
住宅室内空气颗粒物污染状况及其与大气浓度关系的初探   总被引:5,自引:0,他引:5  
目的了解当前住宅室内空气PM2.5和PM10的污染水平及其与室外大气浓度的关系。方法选择10户市区常住家庭,采用单孔多段冲击式颗粒物采样仪进行室内外空气PM2.5、PM10浓度的同时监测。结果非采暖期室内空气PM2.5和PM10的浓度范围分别为27.0~272.9μgm3和42.9~309.6μgm3;采暖期分别为20.7~251.4μgm3和34.0~283.9μgm3。PM2.5与PM10浓度之间呈良好的直线相关关系。室内外颗粒物浓度的相关关系在非采暖期和采暖期有所不同。结论住宅室内空气颗粒物污染比较严重,今后应进一步研究室内颗粒物的污染规律,探讨颗粒物对人群健康的影响。  相似文献   

16.
目的研究室内外PM_(2.5)中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的分布特征。方法选择7个典型地区,每个地区设置室内外两个监测点,2013年5月—2014年4月连续监测PM_(2.5)中OC和EC。结果室内OC和EC年均浓度(中位值和四分位值)分别为13.4μg/m~3(8.82~26.6μg/m~3)和3.79μg/m~3(2.09~6.98μg/m~3),室外分别为15.4μg/m~3(10.6~35.2μg/m~3)和4.96μg/m~3(2.92~9.39μg/m~3),室内外OC分别占总碳的78%和73%。统计发现,碳类物质室外高于室内,OC浓度高于EC;燃煤季室外OC浓度最高,其他季节无差异;周六日室外OC浓度最高,周一至周三最低;7个典型地区室外OC浓度为:扬尘区、航油区、工业区、轻工业区汽车尾气区、发电厂区清洁对照区。室外OC与室外EC呈直线关系(r=0.886),室内外OC呈直线关系(r=0.915),室内外EC呈直线关系(r=0.894),碳类物质与PM_(2.5)呈直线关系(rOC-PM 2.5=0.785,rEC-PM 2.5=0.775)。夏季OC类物质室内与室外比值(I/O值)最高且与另外三季的结果有差异。燃煤季室外OC与EC比值最高,夏季最低。结论北京空气中碳类物质污染值得关注,雾霾期间应特别加强对OC防护,应采取有的放矢的措施控制OC污染。  相似文献   

17.
目的了解上海市居民住宅室内外PM_(2.5)浓度的长期变化趋势及相关影响因素,为制定和完善室内空气质量标准提供数据支持和科学依据。方法于2015年9月—2016年5月在上海市区某居民住宅连续同步监测室内外PM_(2.5)浓度,每月工作日连续采样4 d,周末连续采样2 d。同期采用磁开关记录仪和室内人员活动模式问卷,记录住户开关窗频率、烹饪、净化设备使用情况等。结果累计采样1 296 h,室内及室外PM_(2.5)浓度的小时均值分别为(47.81±35.38)、(86.85±85.40)μg/m3。室内外PM_(2.5)浓度呈明显正相关(rs=0.859,P0.01),室内外PM_(2.5)浓度比值(I/O比值)平均为0.75±0.37,且冬季和休息时段(0:00—6:00)比值较低。室外PM_(2.5)浓度高、室内烹饪、开窗与室内PM_(2.5)浓度升高有关,室内净化设备的使用可降低室内PM_(2.5)浓度。结论本次监测的居民住宅室内PM_(2.5)浓度与室外浓度相关,I/O比值呈季节性和昼夜变化;关闭门窗时建筑围护结构对室外PM_(2.5)有一定阻隔作用,使用空气净化设备可降低室内PM_(2.5)浓度。  相似文献   

18.
目的利用鼠伤寒沙门菌回复突变试验(Ames试验)测定冬季重污染天气下PM_(2.5)的致突变性。方法利用大流量采样器收集冬季优良天气及重污染天气PM_(2.5),PM_(2.5)全颗粒物剂量为100、250、500和1 000μg/皿,选用TA98菌株,采用平板掺入法进行Ames试验。结果优良天气下收集的PM_(2.5)在500、1 000μg/皿-S9剂量组及1 000μg/皿+S9剂量组致突变率(MR)2且有剂量-效应关系;严重污染天气下收集的PM_(2.5)在250、500和1 000μg/皿±S9剂量组MR2且有剂量-效应关系。结论 PM_(2.5)全颗粒物对TA98具有一定的致突变效应。  相似文献   

19.
为探讨不同风速条件对室内外PM_(2.5)浓度关系的影响。对某典型无人办公室室内和室外的PM_(2.5)浓度、室外风速和相对湿度(RH)进行了长达1年的连续监测,并在对相对湿度分层的情况下分析风速对室内外PM_(2.5)浓度的影响。结果显示在不同相对湿度范围内,室内和室外PM_(2.5)浓度均具有很强的相关性。RH≤20%时,当风速4 m/s时,风速的增加有助于室外PM_(2.5)浓度的升高;风速≥4 m/s时,有助于降低室外PM_(2.5)浓度。RH 20%~40%时,当风速≥5 m/s时室内外PM_(2.5)浓度得到明显改善。RH40%~60%时,风速1 m/s时,室内外PM_(2.5)浓度均随风速增加而降低。RH60%~80%时,室内外PM_(2.5)浓度均随风速增加而降低。RH≥80%时,风速3 m/s时,室内外PM_(2.5)浓度明显降低且均随风速增加而降低。而未对相对湿度分层的条件下,风速1 m/s时,室内外PM_(2.5)浓度均随风速增加而降低。当RH≤20%时,I/O比随风速先降低而后略微升高,而其他相对湿度条件下的I/O比显示出随风速增加而降低的趋势。提示风速是影响室内外PM_(2.5)浓度关系的重要因素,但不同相对湿度条件下,其影响结果不同。  相似文献   

20.
目的了解地铁车站PM_(2.5)金属元素污染情况,为制定地铁环境卫生防护措施提供依据。方法选择某直辖市2座客流量最大的地铁车站为现场监测点,采集站台、隧道和室外环境的PM_(2.5),采用电子天平测定PM_(2.5)质量浓度,采用电感耦合等离子体质谱仪测定PM_(2.5)中铁(Fe)、铝(Al)、铜(Cu)、锰(Mn)、镍(Ni)、铅(Pb)、锌(Zn)、铬(Cr)、钡(Ba)和镉(Cd)含量,分析10种金属元素的污染指数(PI)和富集水平(EF)。结果站台环境PM_(2.5)质量浓度为(101.46±32.88)μg/m~3,隧道为(104.42±32.95)μg/m~3,室外为(74.25±13.29)μg/m~3。站台和隧道环境PM_(2.5)中Fe质量浓度最高,分别为(33.19±5.93)μg/m~3和(39.95±11.56)μg/m~3,占PM_(2.5)质量浓度的(33.73±9.40)%和(42.72±17.17)%。站台环境PM_(2.5)中Fe、Mn和Ba的PI均值分别为29.67、9.24和7.13,EF均值分别为20.15、4.55和4.33;隧道环境PM_(2.5)中Fe、Mn和Ba的PI均值分别为36.30、11.23和8.30,EF均值分别为19.44、4.16和4.07;Fe、Mn和Ba的污染程度均为非常高,富集水平分别为严重、中等和中等。结论本次调查的地铁车站PM_(2.5)中主要金属污染物为Fe、Mn和Ba,并在地铁环境中富集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号