首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
以铝皂石胶体为原料,用静态吸附的方法,通过计算吸附量和吸附率,探讨铝皂石胶体吸附Cs+时,吸附时间、胶体溶液pH值、溶液中的离子浓度、腐殖酸(HA)的投加量以及吸附时的温度对吸附效果的影响。结果表明:1 mL 300 μg/mL的Cs+溶液加入9 mL饱和铝皂石胶体溶液,吸附时间为20 min、溶液pH值为7,腐殖酸(HA)的投加量为3 mg,温度为45 ℃时,铝皂石胶体对Cs+的吸附效果最好。溶液中阴阳离子对吸附的抑制作用顺序分别为:CO32->HCO3->NO3->SO42-,Ca2+>Mg2+>K+。铝皂石胶体对Cs+的吸附过程符合准二级动力学方程和Langmuir热力学模型,是一个自发吸热的过程。  相似文献   

2.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

3.
以阿拉善粘土岩胶体为吸附介质,采用静态吸附的方法,探讨了不同铀初始浓度、pH、离子种类对粘土岩胶体吸附U(Ⅵ)行为的影响。实验结果表明:U(Ⅵ)的初始浓度为3μg·mL~(-1)时,达到最佳吸附效果;吸附分配系数随pH的增加呈现先增加后降低的趋势,且在pH=8时达到最佳吸附效果;阴、阳离子对U(Ⅵ)在粘土岩胶体中的吸附有一定的抑制作用,其中Ca~(2+)、HCO_3~-、CO_3~(2-)抑制作用较强。U(Ⅵ)在粘土岩胶体中的吸附等温线符合Freundlich等温方程;吸附前后红外光谱表明,与吸附相关的主要基团为羟基。  相似文献   

4.
土壤腐殖酸的提取及其对U(Ⅵ)的吸附   总被引:4,自引:1,他引:4  
用稀碱法从拟作为核废物填埋场的土壤中提取腐殖酸并用元素分析和红外光谱进行表征。用此腐殖酸对U(Ⅵ)进行的吸附实验结果表明:当U(Ⅵ)初始总浓度为0.84×10-4mol/L、溶液pH为3时,5mg腐殖酸可从20mL溶液中吸附U(Ⅵ)80%以上;两相接触8h后达到动态平衡;水相U(Ⅵ)浓度与吸附量之间的关系符合Langmuir经验公式;在0~40℃范围内,温度对吸附有不大的正影响;Al3+、Ca2+、Nd3+、Eu3+、CO2-3、柠檬酸根离子、SO2-4和EDTA等能使该腐殖酸对U(Ⅵ)的吸附率显著降低,而K+、NO-3等对吸附则无明显影响。  相似文献   

5.
以高岭土为研究对象,采用静态吸附的实验方法,探讨了吸附时间、铀(Ⅵ)的初始浓度、吸附剂质量、pH值、离子种类、腐殖酸质量等因素对铀(Ⅵ)吸附的影响。结果表明:高岭土对铀(Ⅵ)的吸附性能较好,在6 h时就达到了平衡,最佳铀(Ⅵ)的初始浓度为60μg?m L~(-1);最佳的吸附剂质量为0.01 g;随着pH值的增大,高岭土对铀(Ⅵ)的吸附效果先增大,后减小,pH=5时,吸附效果最大;溶液中K~+、NO_3~-、Na~+和SO_4~(2-)对铀(Ⅵ)的吸附影响较小,Mg~(2+)、CO_3~(2-)和HCO_3~-对铀(Ⅵ)的吸附有抑制效果,不利于吸附;溶液中腐殖酸质量的增加会抑制高岭土对铀(Ⅵ)的吸附。实验结果同时表明:准二级动力学模型较准一级动力学模型能更好地描述U(Ⅵ)在高岭土上的吸附。  相似文献   

6.
采用静态法研究了某铀矿山附近土壤中的红壤胶体在不同pH值、离子强度、吸附平衡时间、铀溶液初始浓度、胶体用量、胶体粒径和有机质条件下对U(Ⅵ)的吸附影响,从热力学和动力学方面对吸附过程进行了分析,并通过元素分析、红外光谱(FT-IR)和扫描电镜(SEM)对吸附机理进行了初步探讨。实验结果表明:离子强度越小,胶体粒径越小,胶体对U(Ⅵ)的吸附量越大;单位质量红壤胶体对铀的吸附量随铀初始质量浓度的增大而增大,随红壤胶体用量的增大而减少;在25 ℃、pH值为3.5、离子强度为0.001 mol/L时,粒径小于1 μm的红壤胶体的饱和吸附量qmax为76.76 μg/mg。红壤胶体吸附铀酰离子前后的红外光谱表明,与吸附相关的主要基团为羟基、羰基、Si-O、Si-O-Fe等。红壤胶体对铀的吸附遵循Langmuir吸附等温线,符合准二级吸附动力学方程。  相似文献   

7.
通过水热合成法成功地制备了丙三醇改性Ni/Al型水滑石(GMH),并通过批量处理法和静态吸附法考察了在固体投加量、溶液pH、离子强度、腐殖酸、接触时间和温度等因素影响下,溶液中Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附行为。采用扫描电镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)等表征手段对材料吸附前后进行分析,结合吸附动力学和热力学模型对吸附机理进行探讨。结果表明,溶液pH值对Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附行为影响显著,在pH=7.0左右时吸附率达到最大;准二级动力学模型和Langmuir等温线模型可以很好地描述Eu(Ⅲ)和U(Ⅵ)在GMH上的吸附过程,且此过程是自发的、吸热的过程;实验条件下,GMH对溶液中的Eu(Ⅲ)和U(Ⅵ)的最大理论吸附量分别为511 mg/g和441 mg/g;GMH对溶液中Eu(Ⅲ)的吸附主要是通过静电相互作用、内层表面络合以及离子交换相互作用实现;而对U(Ⅵ)的吸附主要是通过静电相互作用和内层表面络合作用实现的。实验表明,合成材料在含低放废水的有效净化和修复方面具有很大的应用前景。  相似文献   

8.
天然土壤胶体对U(Ⅵ)迁移的影响   总被引:1,自引:0,他引:1  
以石英砂为填充介质,采用动态柱实验方法研究了某中低放处置场地表土壤胶体对U(Ⅵ)在石英砂柱中迁移行为的影响,并结合静态批式实验探究了土壤胶体对U(Ⅵ)迁移的影响机制。结果表明,当U(Ⅵ)进样质量浓度从1.0 mg/L增大至5.0 mg/L时,U(Ⅵ)在石英砂柱中的穿透速率显著增大,且达到洗脱平衡时所需淋洗液的体积从250 PVs(孔隙体积)增大至400 PVs。与U(Ⅵ)相比,土壤胶体在石英砂柱内迁移较快,这可能是由于土壤胶体与石英砂之间相互作用较弱所致。土壤胶体与U(Ⅵ)共存体系中,U(Ⅵ)的迁移速率明显增大,而土壤胶体迁移速率无显著变化,表明共存体系中U(Ⅵ)的迁移行为主要受土壤胶体所控制。静态吸附实验表明,在石英砂-U(Ⅵ)二元体系中,pH≈6.0时石英砂对U(Ⅵ)的吸附率最大,而在胶体-石英砂-U(Ⅵ)三元体系中,U(Ⅵ)主要在土壤胶体表面发生吸附。本研究所用土壤中胶体的质量分数仅约占0.04%,但可吸附20%U(Ⅵ)(初始质量浓度为5.0 mg/L);由此可见,土壤胶体可与U(Ⅵ)发生强的相互作用,进而对U(Ⅵ)在真实环境体系中的吸附、迁移和扩散等行为产生至关重要的影响。  相似文献   

9.
以石英砂为填充介质,采用动态柱实验方法研究了某中低放处置场地表土壤胶体对U(Ⅵ)在石英砂柱中迁移行为的影响,并结合静态批式实验探究了土壤胶体对U(Ⅵ)迁移的影响机制。结果表明,当U(Ⅵ)进样质量浓度从1.0 mg/L增大至5.0 mg/L时,U(Ⅵ)在石英砂柱中的穿透速率显著增大,且达到洗脱平衡时所需淋洗液的体积从250 PVs(孔隙体积)增大至400 PVs。与U(Ⅵ)相比,土壤胶体在石英砂柱内迁移较快,这可能是由于土壤胶体与石英砂之间相互作用较弱所致。土壤胶体与U(Ⅵ)共存体系中,U(Ⅵ)的迁移速率明显增大,而土壤胶体迁移速率无显著变化,表明共存体系中U(Ⅵ)的迁移行为主要受土壤胶体所控制。静态吸附实验表明,在石英砂-U(Ⅵ)二元体系中,pH≈6.0时石英砂对U(Ⅵ)的吸附率最大,而在胶体-石英砂-U(Ⅵ)三元体系中,U(Ⅵ)主要在土壤胶体表面发生吸附。本研究所用土壤中胶体的质量分数仅约占0.04%,但可吸附20%U(Ⅵ)(初始质量浓度为5.0 mg/L);由此可见,土壤胶体可与U(Ⅵ)发生强的相互作用,进而对U(Ⅵ)在真实环境体系中的吸附、迁移和扩散等行为产生至关重要的影响。  相似文献   

10.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

11.
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343K温度时吸附量达201.6mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303K,溶液中初始铀浓度为500mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

12.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

13.
以高庙子膨润土为研究对象,通过静态吸附实验,考查了高庙子膨润土对U(Ⅵ)的吸附特征,研究了接触时间、固液比、铀的初始浓度、pH、离子类型和离子浓度等因素对U(Ⅵ)吸附特征的影响,并讨论了膨润土对U(Ⅵ)的吸附动力学和热力学过程。结果表明:吸附过程在24 h后达到动态平衡;最佳吸附固液比为1:300;最佳吸附初始浓度为40 mg·L~(-1);在pH为5时,膨润土对U(Ⅵ)的吸附效果最好,过酸或过碱都会影响膨润土对U(Ⅵ)的吸附;溶液中Ca~(2+)、CO_3~(2-)显著降低了膨润土对U(Ⅵ)的吸附效果,影响程度随着离子浓度的增加而增大;Freundlich等温吸附模型和准二级动力学模型对吸附过程的拟合效果较好,主要表现为多层吸附。  相似文献   

14.
为了探究磷酸三钙对U(Ⅵ)的吸附性能与机理,以碳酸钙和磷酸氢二铵为原料,采用固相法合成磷酸三钙粉末,并利用X射线衍射仪(XRD)、傅里叶转换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对其理化特性进行表征。研究pH、固液比、吸附时间、U(Ⅵ)初始浓度、吸附温度等因素对磷酸三钙去除U(Ⅵ)性能的影响。采用动力学吸附、等温吸附、热力学吸附等模型及XRD、FTIR、X射线光电子能谱(XPS)、SEM、能谱仪(EDS)、电感耦合等离子体发射光谱仪(ICP-OES)等表征手段揭示磷酸三钙去除U(Ⅵ)的机理。结果表明:在pH=3.0、固液比0.1 g/L、吸附时间60 min、U(Ⅵ)初始质量浓度120 mg/L、吸附温度308 K的条件下,磷酸三钙对U(Ⅵ)的平衡吸附容量达到999.25 mg/g。该吸附过程符合准二级动力学模型(化学吸附)和Langmuir模型(单层吸附),且为自发吸热过程。磷酸三钙对U(Ⅵ)的去除机理为溶解和沉淀过程:在酸性水溶液中,磷酸三钙溶解出的Ca^(2+)和PO^(3-)_(4)与UO_(2)^(2+)发生沉淀反应,在磷酸三钙表面生成准钙铀云母(Ca(UO_(2))_(2)(PO_(4))_(2)·6H 2O)。以上结果表明:磷酸三钙可作为一种有应用前景的用于处理含U(Ⅵ)废水的吸附材料。  相似文献   

15.
采用元素分析、化学滴定、光谱分析等方法对三种不同来源腐殖酸(AHA、YHA和EHA)进行了分析表征和官能团测定,系统地研究了不同pH、时间、温度和离子强度下它们与U(Ⅵ)的配位行为,并借助分子动力学模拟方法研究了不同腐殖酸模型与U(Ⅵ)相互作用的溶液动力学,探究了动力学过程、配位结构和作用机理。实验结果表明:三种不同来源腐殖酸的元素组成和官能团类型基本相似,均具有较强的芳香性和共轭双键,但也略有差异。YHA的低H/C原子比、高酸度和高官能团含量表明其腐殖化程度较高,存在高的共轭性或芳香族成分,具有较强的金属配位能力。不同来源腐殖酸与U(Ⅵ)的配位行为存在显著差异,且受pH、时间、温度和离子强度的明显影响。分子动力学模拟表明:单个腐殖酸分子与U(Ⅵ)的配位在很短时间内完成,主要的结合位点为羧基,在水溶液中可自发形成具有显著差异的HA-U(Ⅵ)配位结构,其主要驱动力为静电相互作用。上述研究结果不仅有助于进一步理解腐殖酸存在下铀在环境中的化学行为,对放射性废物的地质处置及安全性评价也具有参考价值。  相似文献   

16.
通过静态吸附实验,以稻秆为吸附剂、含U(Ⅵ)溶液为吸附质,研究了吸附剂改性方法、吸附剂用量、溶液pH值、吸附温度等因素对稻秆吸附U(Ⅵ)效果的影响,探讨了改性稻秆吸附U(Ⅵ)的热力学、动力学性质。实验结果表明,用0.5mol/L NaOH能够对稻秆进行有效改性,在吸附pH=4.0、吸附时间为180min、改性稻秆投加量为5~8g/L、室温条件下,改性稻秆吸附U(Ⅵ)可达到较好吸附效果,U(Ⅵ)去除率达到99.72%;但随着铀初始质量浓度的增加,U(Ⅵ)去除率降低。改性稻秆吸附U(Ⅵ)的热力学过程遵循Langmuir等温吸附方程,相关系数r2=0.989 9;改性稻秆吸附U(Ⅵ)的动力学过程符合准二级动力学方程,相关系数r2达到0.999 2。  相似文献   

17.
通过α-酮戊二酸与壳聚糖反应生成Schiff碱,再用NaBH4还原制备出α-酮戊二酸改性壳聚糖。采用FT-IR、XRD和SEM对其结构进行表征,研究其对水溶液中U(Ⅵ)的吸附行为,考察溶液初始pH值、吸附时间、温度等因素对其吸附水溶液中U(Ⅵ)效果的影响。结果表明,在35℃、pH=4.0、吸附时间为45min的条件下,对U(Ⅵ)浓度为5mg/L的水溶液中铀的去除率在99%以上,U(Ⅵ)的剩余浓度已达到国家排放标准(0.05mg/L)。吸附U(Ⅵ)的α-酮戊二酸改性壳聚糖可用8%的NaOH溶液进行解吸再生,解吸再生后的吸附剂对U(Ⅵ)的吸附效果未明显下降。SEM表明,α-酮戊二酸改性壳聚糖表面粗糙,呈现凹凸不平的多孔结构。FT-IR分析显示,α-酮戊二酸改性壳聚糖表面的—COOH是U(Ⅵ)的主要结合位点。  相似文献   

18.
在核废料处理中,如何将毒性大、易迁移的放射性核素U(Ⅵ)转化为毒性小、难迁移的U(Ⅳ)是非常关键的处理步骤。零价铁还原技术由于其价格廉价、环境友好、工艺简单等优点,在放射性核素U(Ⅵ)的还原处理方面也显示了较好的应用前景。本文详细地论述了零价铁去除U(Ⅵ)的3种界面化学作用机理:还原沉淀机理、吸附机理、共沉淀机理;还就各种水化学因素:氧化还原条件、介质pH、共存离子、天然有机质及微生物等对反应作用机理的影响进行了较为深入的讨论;并对如何有效、深入开展零价铁去除U(Ⅵ)的今后研究方向进行了展望。  相似文献   

19.
韩磊  马福秋  薛云  矫彩山 《同位素》2019,32(1):13-21
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343 K温度时吸附量达201.6 mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303 K,溶液中初始铀浓度为500 mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

20.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu~(2+)对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号