首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
研究了深亚微米pMOS器件的热载流子注入(hot-carrier injection,HCI)和负偏压温度不稳定效应(negativebias temperature instability,NBTI)的耦合效应和物理机制.器件在室温下的损伤特性由HCI效应来控制.高温条件下,器件受到HCI和NBTI效应的共同作用,二者的混合效应表现为NBTI不断增强的HCI效应.在HCI条件下器件的阈值电压漂移依赖沟道长度,而NBTI效应中器件的阈值电压漂移与沟道长度无关,给出了分解HCI和NBTI耦合效应的方法.  相似文献   

2.
刘红侠  郝跃 《半导体学报》2005,26(5):1005-1009
研究了在热载流子注入HCI(hotcarrier injection)和负偏温NBT(negative bias temperature)两种偏置条件下pMOS器件的可靠性.测量了pMOS器件应力前后的电流电压特性和典型的器件参数漂移,并与单独HCI和NBT应力下的特性进行了对比.在这两种应力偏置条件下,pMOS器件退化特性的测量结果显示高温NBT应力使得热载流子退化效应增强.由于栅氧化层中的固定正电荷引起正反馈的热载流子退化增强了漏端电场,使得器件特性严重退化.给出了NBT效应不断增强的HCI耦合效应的详细解释.  相似文献   

3.
研究了在热载流子注入HCI(hot-carrier injection)和负偏温NBT(negative bias temperature)两种偏置条件下pMOS器件的可靠性.测量了pMOS器件应力前后的电流电压特性和典型的器件参数漂移,并与单独HCI和NBT应力下的特性进行了对比.在这两种应力偏置条件下,pMOS器件退化特性的测量结果显示高温NBT应力使得热载流子退化效应增强.由于栅氧化层中的固定正电荷引起正反馈的热载流子退化增强了漏端电场,使得器件特性严重退化.给出了NBT效应不断增强的HCI耦合效应的详细解释.  相似文献   

4.
从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。  相似文献   

5.
器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟道空穴浓度,因而,改变沟道掺杂浓度和栅氧化层厚度会引起NBTI退化的不同。首先利用pMOSFETS器件的能带图和NBTI的退化模型,推导出了器件NBTI随器件参数变化的公式,并修订了NBTI的数值模拟方法,然后分别利用理论计算和数值模拟的方法对不同器件参数、相同阈值电压的器件进行定量地计算和仿真,继而总结出一种分析器件NBTI退化的应用模型,可对集成电路和器件的可靠性设计提供指导。  相似文献   

6.
深亚微米MOS器件的热载流子效应   总被引:3,自引:3,他引:3  
刘红侠  郝跃  孙志 《半导体学报》2001,22(6):770-773
对深亚微米器件中热载流子效应 (HCE)进行了研究 .还研究了沟道热载流子的产生和注入以及与器件工作在高栅压、中栅压和低栅压三种典型的偏置条件的关系 .在分析热载流子失效机理的基础上 ,讨论了热载流子效应对电路性能的影响 .提出影响晶体管热载流子效应的因素有 :晶体管的几何尺寸、开关频率、负载电容、输入速率及晶体管在电路中的位置 .通过对这些失效因素的研究并通过一定的再设计手段 ,可以减少热载流子效应导致的器件退化 .  相似文献   

7.
对深亚微米器件中热载流子效应(HCE)进行了研究.还研究了沟道热载流子的产生和注入以及与器件工作在高栅压、中栅压和低栅压三种典型的偏置条件的关系.在分析热载流子失效机理的基础上,讨论了热载流子效应对电路性能的影响.提出影响晶体管热载流子效应的因素有:晶体管的几何尺寸、开关频率、负载电容、输入速率及晶体管在电路中的位置.通过对这些失效因素的研究并通过一定的再设计手段,可以减少热载流子效应导致的器件退化.  相似文献   

8.
刘红侠  郝跃  孙志 《半导体学报》2001,22(6):770-773
对深亚微米器件中热载流子效应(HCE)进行了研究.还研究了沟道热载流子的产生和注入以及与器件工作在高栅压、中栅压和低栅压三种典型的偏置条件的关系.在分析热载流子失效机理的基础上,讨论了热载流子效应对电路性能的影响.提出影响晶体管热载流子效应的因素有:晶体管的几何尺寸、开关频率、负载电容、输入速率及晶体管在电路中的位置.通过对这些失效因素的研究并通过一定的再设计手段,可以减少热载流子效应导致的器件退化.  相似文献   

9.
通过二维数值模拟的方法,研究了短沟道器件中不同位置的界面电荷对pMOS器件阈值电压的影响。把pMOS器件栅氧化层等分成不同的区域,随即可以在不同的区域设置不同的界面电荷,从而很好地模拟了器件界面电荷处于不同位置时阈值电压漂移的变化情况,并同时考虑了不同漏极偏置的影响;为了探究其变化机制,还提取和比较了一些特殊情况下器件的表面势。这些研究有助于明确器件哪些位置的界面电荷对阈值电压漂移影响更大,这对深刻理解带漏极偏置的负偏压温度不稳定性效应有一定的帮助和促进。  相似文献   

10.
研究了28 nm 多晶硅栅工艺中Ge注入对PMOS器件的负偏压温度不稳定性(NBTI)的影响。在N阱中注入Ge,制作了具有SiGe沟道的PMOS量子阱器件。针对不同栅氧厚度和不同应力条件的器件,采用动态测量方法测量了NBTI的退化情况,采用电荷泵方法测量了界面态的变化情况。实验结果表明,由于Ge的注入,PMOS器件中饱和漏电流的退化量降低了43%,同时应力过程中产生的界面态得到减少,有效提高了PMOS器件的NBTI可靠性。  相似文献   

11.
信号完整性的设计收敛已经成为当前深亚微米集成电路物理设计流程中的关键问题。对信号完整性收敛产生不利影响的有三个因素:串扰、直流电压降和电迁移。其中影响最大的是串扰,串扰噪声会产生大量的时序违规、逻辑错误。主要关注基于串扰控制的物理设计方法,包括新的流程、各个设计阶段对串扰的分析及修正的方法,以达到快速的时序收敛。并且根据真实的设计实例,提出了几点有效的控制串扰的方法和对于信号完整性管理比较有价值的观点。  相似文献   

12.
The silicon nanowire transistor (SNWT) with gate-all-around (GAA) structure can be considered as one of the potential candidates for ultimate scaling due to its superior gate control capability and improved carrier transportation property. In this paper, hot carrier injection (HCI) and negative bias temperature instability (NBTI) behavior of n-type and p-type SNWTs with top-down approach is discussed. In addition to initial fast degradation and quick saturation of NBTI stress behavior, non-negligible impacts of electron traps on the stress/recovery characteristics in p-SNWTs with metal gate is found and characterized with a kind of combined IgId RTN technique. The NBTI behavior is modeled taking account of the impacts from unique structural nature of GAA SNWTs. NBTI induced performance degradation of the typical nanowire-based circuits is estimated based on the proposed model. In addition, stochastic degradation induced by single/few trap in the thin-body SNWTs is observed and analyzed.  相似文献   

13.
超深亚微米物理设计中天线效应的消除   总被引:1,自引:0,他引:1  
分析了超深亚微米物理设计中天线效应的产生机理以及基于超深亚微米工艺阐述了计算天线比率的具体方法。同时,根据天线效应的产生机理并结合时钟树综合提出了消除天线效应的新方法。此方法通过设置合理的约束进行时钟树综合,使得天线效应对时钟延时和时钟偏斜的影响降到最低,从而对芯片时序的影响降到最低。最后结合一款芯片的物理设计,该设计采用台积电(TSMC)65 nm低功耗(LP)工艺,在布局布线中运用所述的方法进行时钟树综合并且使得时钟网络布线具有最大的优先权。此方法有效地消除了设计中存在的天线效应,并且使得天线效应对时钟树的影响降到最低以及对时序的影响降到最小。  相似文献   

14.
Impact of NBTI and HCI on PMOSFET threshold voltage drift   总被引:1,自引:0,他引:1  
Negative bias temperature instability (NBTI) induced PMOSFET parameter degradation is a serious reliability concern in advanced analog and mixed signal technologies. In this paper, Vt-mismatch shift due to NBTI in a cascode current mirror is examined. The impact of NBTI and hot-carrier injection (HCI) on threshold voltage degradation and subsequent damage recovery during annealing is also studied. Finally the influence of channel length, gate voltage, drain voltage and damage recovery on conventional NBTI and HCI DC lifetime extrapolation is characterized with the impact on analog applications highlighted.  相似文献   

15.
深亚微米下芯片的物理设计面临很多挑战,特别是对于超大规模电路,在后端设计流程上要有新的方法.本文以应用于数字滤波的脉冲压缩芯片的物理设计为例,采用"模拟 IP "和改进的数模混合芯片设计流程,实现了模拟和数字部分的联合设计,保证了时序驱动下的持续收敛,并且详细介绍了布局规划、时钟树综合、时序优化及可靠性设计等关键步骤,可为其他类似的设计提供参考.  相似文献   

16.
颜志英 《微电子学》2003,33(2):90-93
当器件尺寸进入深亚微米后,SOI MOS集成电路中的N沟和P沟器件的热载流子效应引起的器件退化已不能忽视。通过分别测量这两种器件的跨导、阈值电压等参数的退化与应力条件的关系,分析了这两种器件的退化规律,对这两种器件的热载流子退化机制提出了合理的解释。并模拟了在最坏应力条件下,最大线性区跨导Gmmax退化与漏偏压应力Vd的关系,说明不同沟长的器件在它们的最大漏偏压以下时,能使Gmmax的退化小于10%。  相似文献   

17.
深亚微米下系统级芯片的物理设计实例   总被引:2,自引:0,他引:2  
曾宏  曾璇  闵昊 《微电子学》2005,35(6):634-638
深亚微米下芯片的物理设计面临很多挑战,特别是对于超大规模的SOC,比如互连延迟(Interconnect delay)、信号完整性(SI)、电压降(IR-Drop)与电迁移(EM)、第三方IP集成,等等.应对这些问题,在后端设计流程上要有新的方法.文章以一块0.18 μm工艺下200万门无线数据传输芯片的物理设计为例,介绍了其中的关键设计步骤和一些解决问题的方案,可为其他类似的设计提供参考.  相似文献   

18.
选取了采用0.25μm工艺的两组器件进行研究.通过对这两种器件关态泄漏电流、跨导和栅电流等电学参数进行分析,得出当器件发展到深亚微米阶段时,影响其辐射效应的主要原因是场氧化层中的陷阱电荷.并对相关机理进行了分析和仿真验证.  相似文献   

19.
选取了采用0.25μm工艺的两组器件进行研究.通过对这两种器件关态泄漏电流、跨导和栅电流等电学参数进行分析,得出当器件发展到深亚微米阶段时,影响其辐射效应的主要原因是场氧化层中的陷阱电荷.并对相关机理进行了分析和仿真验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号