首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extended-range forecast skill of the ECMWF operational forecast model is evaluated during tropical intraseasonal oscillation (ISO) events in the Indo-West Pacific warm pool. The experiment consists of ensemble extended serial forecasts including winter and summer ISO cases. The forecasts are compared with the ERA-40 analyses. The analysis focuses on understanding the origin of forecast errors by studying the vertical structure of relevant dynamical and moist convective features associated with the ISO. The useful forecast time scale for circulation anomalies is in average 13 days during winter compared to 7–8 days during summer. The forecast skill is not stationary and presents evidence of a flow-dependent nature, with states of the coupled system corresponding to long-lived convective envelopes associated with the ISO for which the skill is always low regardless of the starting date of the forecast. The model is not able to forecast skillfully the generation of specific humidity anomalies and results indicate that the convective processes in the model are associated with the erosion of the ISO forecast skill in the model. Circulation-associated anomalies are forecast better than moist convective associated anomalies. The model tends to generate a more stable atmosphere, limiting the model’s capability to reproduce deep convective events, resulting in smaller humidity and circulation anomalies in the forecasts compared to those in ERA-40.  相似文献   

2.
基于集合预报的中国极端强降水预报方法研究   总被引:3,自引:1,他引:2  
刘琳  陈静  程龙  林春泽  吴志鹏 《气象学报》2013,71(5):853-866
极端强降水天气属于小概率事件,其发生具有很多不确定的因素,预报难度很大。根据Anderson-Darling检验原理研究基于集合预报资料的极端强降水天气预报方法,利用2007—2010年中国T213集合预报资料和2001—2010年6—8月中国降水观测资料,分析观测与集合预报累积概率密度分布函数的特征,建立基于集合预报与模式历史预报累积概率密度分布函数连续差异的数学模型——极端降水天气预报指数(EPFI),并对2011年7月中国极端强降水天气进行预报试验。结果表明,极端降水天气预报指数可以充分利用集合降水累积概率密度分布的尾端信息,为极端强降水提供科学合理的预报,基于中国气象局(CMA) T213集合预报的极端降水天气预报指数可提前3—7 d发出极端强降水预警信号,随着预报时效的延长,预报技巧逐渐降低。研究还表明,模式气候累积概率分布的合理性将直接影响极端强降水天气识别能力。  相似文献   

3.
According to the Anderson-Darling principle, a method for forecast of extremely heavy rainfall (abbreviated as extreme rainfall/precipitation) was developed based on the ensemble forecast data of the T213 global ensemble prediction system (EPS) of the China Meteorological Administration (CMA). Using the T213 forecast precipitation data during 2007-2010 and the observed rainfall data in June-August of 2001-2010, characteristics of the cumulative distribution functions (CDFs) of the observed and the T213 EPS forecast precipitation were analyzed. Accordingly, in the light of the continuous differences of the CDFs between model climate and EPS forecasts, a mathematical model of Extreme Precipitation Forecast Index (EPFI) was established and applied to forecast experiments of several extreme rainfall events in China during 17-31 July 2011. The results show that the EPFI has taken advantage of the tail information of the model climatic CDF and provided agreeable forecasts of extreme rainfalls. The EPFI based on the T213 EPS is useful for issuing early warnings of extreme rainfalls 3-7 days in advance. With extension of the forecast lead time, the EPFI becomes less skillful. The results also demonstrate that the rationality of the model climate CDF was of vital importance to the skill of EPFI.  相似文献   

4.
During the summer monsoon (1 June to 30 September) 2007, real-time district level rainfall forecasts in short-range time scale were generated for Indian region applying multimodel ensemble technique. The pre-assigned grid point weights on the basis of correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.5° × 0.5° utilizing two seasons datasets (1 June to 30 September, 2005 and 2006), and the multimodel ensemble forecasts (day 1 and day 2 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district taking the average value of all grid points falling in a particular district. In this paper we examined the performance skill of the multimodel ensemble-based real-time district level short-range forecast of rainfall. It has clearly emerged from the results that the multimodel ensemble technique reported in this study is superior to each ensemble member. District wise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most districts of the country, particularly over the districts where the monsoon systems are dominant. Though the procedure shows appreciable skill to predict occurrence or non-occurrence of rainfall at the district level, it always underestimates rainfall amount, particularly in heavy rainfall events. Possible reasons of this failure may be due to model bias and poor data assimilation procedure.  相似文献   

5.
Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases, theoretical analysis regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of 95%(i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time predictions, as far as the mean-square error is concerned.  相似文献   

6.
集合方法在月动力预报信息提取中的应用   总被引:1,自引:0,他引:1  
本工作将集合方法应用于提取月动力预报有用信息。利用中国气象局国家气候中心T63L16全球谱模式的500百帕高度场月集合预报产品(集合成员数为8个,初始场的选取采用滞后方法(LAF),即相邻两天的0000,0600,1200和1800GMT的初始化资料),就1997年1月至5月共15次预报,分析了集合预报成员间的离散度与预报评分(距平相关系数和均方根误差)的关系,研究了用集合各成员预报离散度作为各个成员逐日预报的权重对月预报效果的影响。结果表明集合预报成员的离散度与预报评分有显著的相关,是有效预报长度N的一个很好估计;用离散度作为权重平均的月预报高度距平相关系数明显高于算术平均和线性权重,此外个例分析表明月平均环流及其异常的预报得到明显的提高。  相似文献   

7.
基于ARPS模式和随机物理过程参数化扰动(stochastically perturbed parameterization)方法,通过10个2018年6—7月间的降水个例,讨论了针对BMJ积云降水参数化方案下不同参数化扰动方式对降水预报的影响。扰动方式包括扰动BMJ方案的温湿倾向和扰动BMJ方案的温湿参考廓线。试验的结果表明BMJ方案在华东区域的降水预报中存在湿偏差,即预报的降水事件多于相应的观测事件。这一偏差在系统性增加参考廓线湿度后仍然存在。BMJ方案对不同扰动方式的响应存在较大差异。扰动BMJ方案的温湿倾向对降水预报的影响较小,且集合离散度低。扰动BMJ方案的温湿参考廓线对降水预报影响显著,能够大幅增加集合离散度,其中对称的BMJ参考廓线扰动对预报技巧评分改进有限,原因是小雨的湿偏差有所增加,而非对称的BMJ参考廓线扰动(扰动均值大于1.0)能够有效提高预报技巧评分并降低湿偏差。此外,非对称扰动大幅改善了BMJ降水预报初期(0~3 h)的空间分布形态,并且改进了夜间降水预报的强度。非对称扰动评分较高的原因是减少了原BMJ方案在降水预报初期的的大范围虚假预报,避免了大气湿度的大范围下降,保障了预报后期的强降水预报能力。而BMJ方案温湿倾向量级较小则是造成倾向扰动方法效果不明显的重要原因。  相似文献   

8.
    
The approach of getting useful information of monthly dynamical prediction from ensemble forecasts is studied. The extended range ensemble forecasts (8 members, the initial perturbations of the lagged average forecast (LAF)(0000, 0600, 1200 and 1800 GMT in two consecutive days) of the 500 hPa height field with the global spectral model (T63L16) from January to May 1997 are provided by the National Climate Center of China. The relationship between the spread of ensemble measured by root–mean–square deviation of ensemble member from ensemble mean and forecast skill (the anomaly correlation or the root–mean–square distance between the ensemble mean forecast and the observation) is significant. The spread of ensemble can evaluate the useful forecast days N for the best estimate of 30 days mean. Thus, a weighted mean approach based on ensemble spread is put forward for monthly dynamical prediction. The anomaly correlation of the weighted monthly mean by the ensemble spread is higher than that of both the arithmetic mean and the linear weighted mean. Better results of the monthly mean circulation and anomaly are obtained from the ensemble spread weighted mean. Supported by the Excellent National State Key Laboratory Project (49823002), the National Key Project ‘Study on Chinese Short-Term Climate Forecast System’ (96-908-02) and IAP Innovation Foundation (8-1308). The data were provided through the National Climate Center of China. The authors wish to thank Ms. Chen Lijuan for her assistance.  相似文献   

9.
基于副热带奇异向量的初值扰动方法已应用于GRAPES (Global and Regional Assimilation PrEdiction System)全球集合预报系统,但存在热带气旋预报路径离散度不足的问题。通过分析发现,热带气旋附近区域初值扰动结构不合理导致预报集合不能较好地估计热带气旋预报的不确定性,是路径集合离散度不足的可能原因之一。通过建立热带气旋奇异向量求解方案,将热带气旋奇异向量和副热带奇异向量共同线性组合生成初值扰动,以弥补热带气旋区域初值扰动结构不合理这一缺陷,进而改进热带气旋集合预报效果。利用GRAPES全球奇异向量计算方案,以台风中心10个经纬度区域为目标区构建热带气旋奇异向量求解方案,针对台风“榕树”个例进行集合预报试验,并开展批量试验,利用中国中央气象台最优台风路径和中国国家气象信息中心的降水观测资料进行检验,对比分析热带气旋奇异向量结构特征和初值扰动特征,评估热带气旋奇异向量对热带气旋路径集合预报和中国区域24 h累计降水概率预报技巧的影响。结果表明,热带气旋奇异向量具有局地化特征,使用热带气旋奇异向量之后,热带气旋路径离散度增加,路径集合平均预报误差和离散度的关系得到改善,路径集合平均预报误差有所减小,集合成员更好地描述了热带气旋路径的预报不确定性;中国台风降水的小雨、中雨、大雨、暴雨各量级24 h累计降水概率预报技巧均有一定提高。总之,当在初值扰动的生成中考虑热带气旋奇异向量后,可改进热带气旋初值扰动结果,并有助于改善热带气旋路径集合预报效果。   相似文献   

10.
Local flash flood storms with a rapid hydrological response are a real challenge for quantitative precipitation forecasting (QPF). It is relevant to assess space domains, to which the QPF approaches are applicable. In this paper an attempt is made to evaluate the forecasting capability of a high-resolution numerical weather prediction (NWP) model by means of area-related QPF verification. The results presented concern two local convective events, which occurred in the Czech Republic (CR) on 13 and 15 July 2002 and caused local flash floods. We used the LM COSMO model (Lokall Model of the COSMO consortium) adapted to the horizontal resolution of 2.8 km over a model domain covering the CR. The 18 h forecast of convective precipitation was verified by using radar rainfall totals adjusted to the measured rain gauge data. The grid point-related root mean square error (RMSE) value was calculated over a square around the grid point under the assumption that rainfall values were randomly distributed within the square. The forecast accuracy was characterized by the mean RMSE over the whole verification domain. We attempt to show a dependence of both the RMSE field and the mean RMSE on the square size. The importance of a suitable merger between the radar and rain gauge datasets is demonstrated by a comparison between the verification results obtained with and without the gauge adjustment. The application of verification procedure demonstrates uncertainties in the precipitation forecasts. The model was integrated with initial conditions shifted by 0.5° distances. The four verifications, corresponding to the shifts in the four directions, show differences in the resulting QPF, which depend on the size of verification area and on the direction of the shift.  相似文献   

11.
Using a statistical relationship between simulated sea surface temperature and Atlantic hurricane activity, we estimate the skill of a CMIP5 multi-model ensemble at predicting multi-annual level of Atlantic hurricane activity. The series of yearly-initialized hindcasts show positive skill compared to simpler forecasts such as persistence and climatology as well as non-initialized forecasts and return anomaly correlation coefficients of ~0.6 and ~0.8 for five and nine year forecasts, respectively. Some skill is shown to remain in the later years and making use of those later years to create a lagged-ensemble yields, for individual models, results that approach that obtained by the multi-model ensemble. Some of the skill is shown to come from persisting rather than predicting the climate shift that occur in 1994–1995. After accounting for that shift, the anomaly correlation coefficient for five-year forecasts is estimated to drop to 0.4, but remains statistically significant up to lead years 3–7. Most of the skill is shown to come from the ability of the forecast systems at capturing change in Atlantic sea surface temperature, although the failure of most systems at reproducing the observed slow down in warming over the tropics in recent years leads to an underestimation of hurricane activity in the later period.  相似文献   

12.
Decadal predictability and forecast skill   总被引:2,自引:1,他引:1  
The “potential predictability” of the climate system is the upper limit of available forecast skill and can be characterized by the ratio p of the predictable variance to the total variance. While the potential predictability of the actual climate system is unknown its analog q may be obtained for a model of the climate system. The usual correlation skill score r and the mean square skill score M are functions of p in the case of actual forecasts and potential correlation ρ and potential mean square skill score $\mathcal{M}$ are the same functions of q in the idealized model context. In the large ensemble limit the connection between model-based potential predictability and skill scores is particularly straightforward with $q=\rho^{2}=\mathcal{M}.$ Decadal predictions of annual mean temperature produced with the Canadian Centre for Climate Modelling and Analysis coupled climate model are analyzed for information on decadal climate predictability and actual forecast skill. Initialized forecast results are compared with the results of uninitialized climate simulations. Model-based values of potential predictability q and potential correlation skill ρ are obtained and ρ is compared with the actual forecast correlation skill r. The skill of externally forced and internally generated components of the variability are separately estimated. As expected, ρ > r and both decline with forecast range τ, at least for the first five years. The decline of skill is associated mainly with the decline of the skill of the internally generated component. The potential and actual skill of a forecast of time-averaged temperature depends on the averaging period. The skill of uninitialized simulations is low for short averaging times and increases as averaging time increases. By contrast, skill is high at short averaging times for forecasts initialized from observations and declines as averaging times increase to about three years, then increases somewhat at longer averaging times. The skills of the initialized forecasts and uninitialized simulations begin to converge for longer averaging times. The potential correlation skill ρ of the externally forced component of temperature is largest at tropical latitudes and the skill of the internally generated component is largest over the North Atlantic, parts of the Southern Ocean and to some extent the North Pacific. Potential skill over extratropical land is somewhat weaker than over oceans. The distribution of actual correlation skill r is broadly similar to that of potential skill for the externally forced component but less so for the internally generated component. Differences in potential and actual skill suggest where improvements in the forecast system might be found.  相似文献   

13.
This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Niño–Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection- based four-dimensional variational data assimilation (DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction, which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors (NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.  相似文献   

14.
A method for selecting optimal initial perturbations is developed within the framework of an ensemble Kalman filter (EnKF). Among the initial conditions generated by EnKF, ensemble members with fast growing perturbations are selected to optimize the ENSO seasonal forecast skills. Seasonal forecast experiments show that the forecast skills with the selected ensemble members are significantly improved compared with other ensemble members for up to 1-year lead forecasts. In addition, it is found that there is a strong relationship between the forecast skill improvements and flow-dependent instability. That is, correlation skills are significantly improved over the region where the predictable signal is relatively small (i.e. an inverse relationship). It is also shown that forecast skills are significantly improved during ENSO onset and decay phases, which are the most unpredictable periods among the ENSO events.  相似文献   

15.
基于非静力模式物理扰动的中尺度集合预报试验   总被引:8,自引:0,他引:8       下载免费PDF全文
以GRAPES中尺度有限区模式作为试验模式, 从模式的不确定性方面来构造中尺度的集合预报, 重点考虑物理因子与初始条件的扰动作用。针对2004年7月10日北京城区的突发性暴雨过程进行了36 h的集合预报试验。结果表明:GRAPES模式可有效地捕捉到中尺度过程的信息; 中尺度集合预报是可行的, 可改进中尺度暴雨过程落区、强度的预报; 不同集合方案的预报结果各不相同, 同一方案各个成员的预报结果也有差异, 即存在适宜的离散度; 在离散度分析中发现在北京附近存在一个明显大值区, 且在大气中低层的垂直结构表现出一致性, 表明这一区域的预报不确定性很大。从集合检验结果中得到:单纯考虑模式物理扰动来构造中尺度集合预报系统有一定难度, 当加入初始场不确定信息后, 同时考虑模式的不确定性和初始场的不确定性, 有助于捕捉更多的中尺度系统的不确定信息, 有助于构造更为有效的中尺度集合预报系统。  相似文献   

16.
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2~(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.  相似文献   

17.
This study presented an evaluation of tropical cyclone (TC) intensity forecasts from five global ensemble prediction systems (EPSs) during 2015-2019 in the western North Pacific region. Notable error features include the underestimation of the TC intensity by ensemble mean forecast and the under-dispersion of the probability forecasts.The root mean square errors (brier scores) of the ensemble mean (probability forecasts) generally decrease consecutively at long lead times during the five years, but fluctuate between certain values at short lead times.Positive forecast skill appeared in the most recent two years (2018-2019) at 120 h or later as compared with the climatology forecasts. However, there is no obvious improvement for the intensity change forecasts during the 5-yearperiod, with abrupt intensity change remaining a big challenge. The probability forecasts show no skill for strongTCs at all the lead times. Among the five EPSs, ECMWF-EPS ranks the best for the intensity forecast, while NCEP-GEFS ranks the best for the intensity change forecast, according to the evaluation for ensemble mean and dispersion. As for the other probability forecast evaluation, ECMWF-EPS ranks the best at lead times shorter than 72 h, while NCEP-GEFS ranks the best later on.  相似文献   

18.
The Madden and Julian Oscillation (MJO) is the most prominent mode of intraseasonal variations in the tropical region. It plays an important role in climate variability and has a significant influence on medium-to-extended ranges weather forecasting in the tropics. This study examines the forecast skill of the oscillation in a set of recent dynamical extended range forecasts (DERF) experiments performed by the National Centers for Environmental Prediction (NCEP). The present DERF experiments were done with the reanalysis version of the medium range forecast (MRF) model and include 50-day forecasts, initialized once-a-day (0Z) with reanalyses fields, for the period between 1 January, 1985, and 31 December, 1989. The MRF model shows large mean errors in representing intraseasonal variations of the large-scale circulation, especially over the equatorial eastern Pacific Ocean. A diagnostic analysis has considered the different phases of the MJO and the associated forecast skill of the MRF model. Anomaly correlations on the order of 0.3 to 0.4 indicate that skillful forecasts extend out to 5 to 7 days lead-time. Furthermore, the results show a slight increase in the forecast skill for periods when convective anomalies associated with the MJO are intense. By removing the mean errors, the analysis shows systematic errors in the representation of the MJO with weaker than observed upper level zonal circulations. The examination of the climate run of the MRF model shows the existence of an intraseasonal oscillation, although less intense (50–70%) and with faster (nearly twice as fast) eastward propagation than the observed MJO. The results indicate that the MRF model likely has difficulty maintaining the MJO, which impacts its forecast. A discussion of future work to improve the representation of the MJO in dynamical models and assess its prediction is presented. Received: 28 December 1998 / Accepted: 27 September 1999  相似文献   

19.
基于TIGGE资料的地面气温多模式超级集合预报   总被引:13,自引:3,他引:10       下载免费PDF全文
基于TIGGE资料, 采用均方根误差分别对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和英国气象局4个中心集合预报的地面气温场集合平均结果进行检验评估, 比较各中心地面气温的预报效果。并利用超级集合、多模式集合平均和消除偏差集合平均3种方法对4个中心的地面气温预报进行集成, 同时对预报结果进行分析。结果表明: 2007年夏季日本气象厅与欧洲中期天气预报中心在北半球大部分地区预报效果最好, 各中心在不同地区预报效果不同。超级集合与消除偏差集合平均降低了预报误差, 预报效果优于最好的单个中心预报和多模式集合平均。对于较长的预报时效, 消除偏差集合平均表现出了更好的预报性能。  相似文献   

20.
This paper is devoted to the testing experiment of a postprocessing tool aimed at the objective analysis of propagating gust fronts in a given convective environment. The tool is being developed to be applicable in the operational mode by utilizing NWP model outputs. The experiment was carried out on two summer convective cases which occurred in the Czech Republic. The cases were numerically simulated by the limited area NWP model LM COSMO with the horizontal resolution of 2.8 km. They represent different types of convective systems, both accompanied by objectively identifiable gust fronts and causing heavy precipitation. The event from July 2000 was characterised by the development of isolated thunderstorms. The other event from July 1998 was a long-lasting and organised convective system — a squall line. The hypothesis was that the developed postprocessing tool is capable to evaluate the role which downdraft outflows played in the decay and initiation of convective cells by interaction with convective environment and thus in prolongation of convection lifetime.The procedures of the Objective Analysis of Gust Fronts (OAGF) were applied to the thermodynamic outputs of the LM COSMO. The aim was to determine the position of gust fronts within the domain and to assess their speed of movement and the potential to initiate convection according to the properties of ambient vertical shear and stability as well as humidity conditions ahead of the respective downdraft outflows. In addition, the Radar Simulation Model (RSM) was employed to monitor the simulated convective systems in arbitrary PPI and RHI scans and to verify qualitatively the LM COSMO precipitation forecasts.The case studies has confirmed the applicability of the LM COSMO–OAGF chain and RSM, which may represent the potential for improving the operational nowcasting of hazardous convection phenomena. In both simulations, the objective gust fronts moved on into the vertical shear-favourable environment for triggering new convection. In addition to the dynamical organisation, there were also favourable stability and humidity conditions in the area of forced upward motions in the simulation of the event from July 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号