首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Tungsten carbide and graphitic carbon (WC/GC) composite has been synthesized by a simple solid-state pyrolysis method from an in situ route. The results indicate that the synthesized sample has a large specific surface area (S BET) of 198 m2 g?1, and the WC nanoparticles (NPs) with a narrow particle size are well dispersed on the graphitic carbon. After loading Pt nanoparticles, the prepared Pt/WC/GC catalyst exhibits a mass activity of 416.1 mA mg?1 Pt toward methanol electrooxidation, which is much higher than that of commercial Pt/C (JM) (231.2 mA mg?1 Pt). Moreover, the onset potential is 100 mV more negative than that on Pt/C (JM) electrocatalyst. In addition, the Pt/WC/GC catalyst has stronger resistance to CO poisoning than the commercial Pt/C (JM). Its superior electrochemical performance could be attributed not only to the synergistic effect between Pt and WC NPs but also to the excellent electrical conductivity of GC and proper porous structure for desirable mass transportation in a porous electrode.  相似文献   

2.
《Electroanalysis》2004,16(3):199-209
Electrocatalytic oxidation of methanol on a glassy carbon disc electrode modified with Ni(II)‐hematoporphyrin IX, complex and conditioned by potential recycling in a limited range (between 100 and 600 mV vs. SCE) in 0.10 M NaOH solution, abbreviated as NiOHPME(A), was studied by cyclic voltammetry in alkaline medium. The results were compared with those obtained for a NiO modified glassy carbon electrode, NiOME, prepared in similar conditions. The findings show that the NiOHP film at NiOHPME(A) behaves as an efficient electrocatalyst for the oxidation of methanol in alkaline medium via Ni(III) species with the cross‐exchange reaction occurring throughout the layer at a low concentration of methanol and for a thin film of modifier. A plausible mechanism was proposed for catalytic oxidation of methanol at NiOHP modified electrode. Moreover, the effects of various parameters such as the scan rate, methanol concentration, thickness of NiOHP film and the real surface area of modified electrode on the oxidation of methanol were investigated. Finally, it has been shown that the NiOHPME(A) has a long‐term stability toward the oxidation of methanol.  相似文献   

3.
Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.  相似文献   

4.
Electrocatalytic oxidation of methanol on a glassy carbon electrode coated with Ni(II)-(1,2-phenylendiamine)2 (GC/NiOPD), conditioned by the potential recycling in a potential range of 100–650 mV (vs. SCE) is studied by cyclic voltammetry in an alkaline medium (0.10 M NaOH). The results show that the NiOPD layer formed at the surface of the electrode behaves as an efficient electrocatalyst for the oxidation of methanol in the alkaline medium via the Ni(III) species with a cross exchange reaction occurring throughout the layer at a low concentration of methanol. The effects of various parameters such as potential scan rates, methanol concentration and NiOPD surface concentration on the electro-oxidation of methanol are also investigated.  相似文献   

5.
A Pt–CeO2 composite thin film was prepared on a glassy carbon electrode by one-step electrochemical deposition technique. The film was constructed of Pt particles well dispersed and embedded in a porous CeO2 substrate. The prepared Pt–CeO2/GC electrode showed a better catalytic performance toward methanol electrooxidation compared with the bulk Pt electrode.  相似文献   

6.
The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO3^2- and HCO3^- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.  相似文献   

7.
A simple, versatile, and cost-effective one-pot electrochemical deposition is used to fabricate rhodium (Rh) nanoparticles decorated surface of reduced graphene oxide (rGO) functionalized glassy carbon electrode (GCE) for oxygen reduction reaction (ORR) in alkaline media. The chemical and physical structure of the sample is probed via transmission electron microscopy, rotating disk electrode (RDE), X-ray photoelectron spectroscopy, linear sweep voltammetry, and Raman spectroscopy. The synergistic effects between the unique properties of Rh nanoparticles and rGO creates such innovative hybrid that exhibits a catalytic activity comparable to that of the commercial platinum electrocatalyst (Pt/C). As a result, the as-electrodeposited Rh@rGO hybrid exhibits outstanding ORR activity in alkaline media, as evidenced by a larger diffusion-limited current, greater positive onset potential, much better stability and methanol tolerance than Pt/C under the same conditions.  相似文献   

8.
《Electroanalysis》2003,15(4):278-286
The electrocatalytic oxidation of methanol at a glassy carbon electrode modified by a thin film of poly(o‐aminophenol) (PoAP) containing Pt, Pt‐Ru and Pt‐Sn microparticles has been investigated using cyclic voltammetry as analytical technique and 0.10 M perchloric acid as supporting electrolyte. It has been shown that the presence of PoAP film increases considerably the efficiency of deposited Pt microparticles toward the oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru or specially Sn is co‐deposited in the polymer film. The effects of various parameters such as the thickness of polymer film, concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated.  相似文献   

9.
利用表面活性剂十二烷基磺酸钠(SDSN)的调控合成不同粒径的硒模板和铂纳米空球(Pthollow),并将其修饰于玻碳(GC)基底即可制得Pthollow/GC电极;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)和X射线光电子能谱等观察表征了Pthollow样品的形貌与组成;以甲醇为探针分子,研究Pthollow/GC和电沉积铂电极(Ptnano/GC)对甲醇氧化的电催化活性. 结果表明,由铂原子簇团构筑的多孔铂纳米空球粒径均匀,分散性好;用4 μmol·L-1 SDSN控制合成的直径为130 nm的Pthollow制备的Pthollow/GC电极对甲醇氧化的电催化活性最佳.  相似文献   

10.
In this work, platinum particles decorated nanostructured poly (1,5-diaminonaphthalene) modified glassy carbon electrode (Pt/Nano-PDAN/MGCE) is prepared. The composite catalysts are characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical methods. The electrochemical methanol oxidation reaction is studied at the surface of this modified electrode. At same Pt loading, the Pt/Nano-PDAN/MGCE can act as higher efficient catalyst for methanol oxidation than that Pt/MGCE. Then, the influence of some parameters such as potential scan rates, switching potential, and methanol concentration on its oxidation as well as long-term stability of the modified electrode have studied by electrochemical methods. Also, ability of the modified electrode toward electrocatalytic oxidation of formaldehyde as an intermediate in methanol oxidation has been investigated.  相似文献   

11.
Nafion- and clay-coated electrodes are prepared by casting a known amount of Nafion and clay solutions on the glassy carbon electrode (GC) surface. Subsequently platinum (Pt) particles are deposited on the GC electrodes and on the Nafion- and clay-coated GC electrodes. The formation of Pt particles on the modified electrode surface is analysed by scanning electron microscope, while cyclic voltammetry provides information on the anodisation of Pt particles deposited on the GC electrodes at >0.5 V(SCE) leading to the formation of platinum oxide (PtO). The involvement of PtO on the catalysed dioxygen reduction to hydrogen peroxide is reported. Macrocyclic cobalt(III) complex is also used as the electrocatalyst. The effect of pH on the reduction of PtO and dioxygen in deaerated and oxygenated solutions is studied to understand the dioxygen reduction processes. Received: 24 January 1997 / Accepted: 14 April 1997  相似文献   

12.
Electrocatalytic oxidation of small organic molecules has attracted considerable at-tentionin system of fuel celll-4. In this research field, Parsons4 pointed out that the electrodeswhich were prepared from non-noble substrates modified by excellent dispersal noblemetal particles and which still exhibited better catalytic activity should be studied. Ionimplantation is a technique with unique advantage and has been used in manyelectrochemical research fieldss'6. The present study is an at-tempt…  相似文献   

13.
High metal-loading Pt/C electrocatalysts are important for the fabrication of thin-layered membrane electrode assemblies (MEAs). However, the preparation of high-loading Pt catalysts with a narrow size distribution of nanoparticles remains a challenge. Herein, ordered mesoporous carbon (OMC) with large mesopores (~15 nm) and a high surface area (1316.0 m2 g?1) was fabricated using a SiO2 nanosphere array as a template. This material was developed to support a high loading of Pt nanoparticles (60 wt%) and was then used as an electrocatalyst for the methanol oxidation reaction (MOR). The prepared Pt/OMC contains Pt nanoparticles with an average size of ~1.9 nm that are uniformly dispersed on the mesoporous walls of the OMC. The Pt/OMC catalyst exhibits smaller Pt nanoparticle size, greater Pt dispersion, larger specific electrochemically active surface area (ECSA), and higher electrocatalytic activity for the MOR than the carbon black (Vulcan XC-72R)-supported Pt and the commercial Pt/C catalysts.  相似文献   

14.
Effect of electrochemical oxidation of glassy carbon on deposition of platinum particles and electrocatalytic activity of platinum supported on oxidized glassy carbon (Pt/GCOX) were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + H2PtCl6 solution. Glassy carbon was anodically polarised in 0.5 M H2SO4 at 2.25 V vs. saturated calomel electrode (SCE) during 35 s. Electrochemical treatment of GC support, affecting not significantly the real Pt surface area, leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCOX electrode for methanol oxidation is larger than polycrystalline Pt and for more than one order of magnitude larger than Pt/GC electrode. This increase in activity indicates the pronounced role of organic residues of GC support on the properties of Pt particles deposited on glassy carbon.  相似文献   

15.
离子注入Pt的玻碳电极上甲酸和甲醛的电氧化   总被引:3,自引:0,他引:3  
制备了离子注入Pt的玻碳电极(Pt/GC),注入剂量为5×1017ion/cm2,此电极的表面组成和各元素的浓度-深度分布用AES测量,注入Pt的价态用XPS测量.在0.5mol/LHClO4溶液中,用Pt/GC电极和纯Pt电极研究了甲酸的电氧化行为,并在五种不同种类的电解质溶液中研究了甲醛的电氧化行为.结果表明,Pt/GC电极对甲酸和甲醛的电催化性能按真实表面积计算优于纯Pt电极.这可能与离子注入Pt过程中形成纳米团簇有关.此外,在同一电极上,甲醛在不同种类的电解质溶液中产生不同的氧化电流.说明阴离子对甲醛的电氧化过程有明显影响  相似文献   

16.
A comparative investigation of electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto a glassy carbon surface (Pt/GC) and within a thin Nafion® film formed on a GC electrode (Pt/Nf/GC) is described. As test reaction the methanol oxidation in sulfuric acid solutions is used. Dependences of the steady-state specific reaction rates upon potential and methanol concentration were established, as well as those of the platinum surface coverage with methanol chemisorption products upon concentration. It was shown that at higher platinum loadings (above 60 μg cm−2) the specific activities of Pt/GC and Pt/Nf/GC are nearly the same and close to that of smooth platinum. At such loadings the surface coverage of the platinum deposit surface with organic particles does not differ from that of smooth platinum. At very low platinum loadings in the polymeric matrix (10–30 μg cm−2) a considerable decrease in the adsorption of strongly chemisorbed methanol particles is observed. These deposits are characterized by a low specific activity, which may be caused by the decrease of the platinum particle’s size, leading to a decrease in the amount of weakly bound methanol particles participating in the limiting reaction step.  相似文献   

17.
Stable metal oxides insoluble in acidic medium have been prepared and characterized. The influence of the type of metal oxide (MOx) on the activity of Pt towards ethylene glycol oxidation in acidic medium has been examined. All modified Pt/MOx/glassy carbon (GC) electrodes exhibited a better activity compared to Pt/GC. While Pt/SnO2/GC electrode exhibited the highest activity, Pt/CeO2/GC revealed the best tolerance against poisoning process.  相似文献   

18.
Carbon aerogels (CAs) were prepared by sol‐gel polycondensation of resorcinol and formaldehyde with BET surface area of 616 m2 g?1 and the average pore size of 9.8 nm. The prepared CAs were used as supports for Pt nanoparticles for methanol oxidation in alkaline media. In comparison with Pt supported on commercial Vulcan XC‐72R carbon (Pt/C) electrocatalysts, Pt supported on CAs (Pt/CAs) electrocatalysts exhibited higher peak current density and more negative onset potential toward methanol oxidation. The effects of different parameters such as NaOH concentration, methanol concentration, and scan rate on the methanol oxidation reaction were investigated in detail. The results showed that the Pt/CAs electrocatalysts had promising application for methanol oxidation in alkaline media.  相似文献   

19.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

20.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号