首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The environmental impact of elevated carbon dioxide (CO2) levels has become of more interest in recent years. This, in relation to globally rising CO2 levels and related considerations of geological CO2 storage as a mitigating measure. In the present study effect data from literature were collected in order to conduct a marine ecological risk assessment of elevated CO2 levels, using a Species Sensitivity Distribution (SSD). It became evident that information currently available from the literature is mostly insufficient for such a quantitative approach. Most studies focus on effects of expected future CO2 levels, testing only one or two elevated concentrations. A full dose-response relationship, a uniform measure of exposure, and standardized test protocols are essential for conducting a proper quantitative risk assessment of elevated CO2 levels. Improvements are proposed to make future tests more valuable and usable for quantitative risk assessment.  相似文献   

4.
Estimates of greenhouse gas evasion from rivers have been refined over the past decades to constrain their role in global carbon cycle processes. However, despite 55% of the human population living in urban areas, urban rivers have had limited attention. We monitored carbon dynamics in an urbanized river (River Kelvin, 331 km2, UK) to explore the drivers of dissolved carbon lateral and vertical export. Over a 2-year sampling period, riverine methane (CH4) and carbon dioxide (CO2) concentrations were consistently oversaturated with respect to atmospheric equilibria, leading to continual degassing to the atmosphere. Carbon stable isotopic compositions (δ13C) indicated that terrestrially derived carbon comprised most of the riverine CH4 and dissolved CO2 (CO2*) load while dissolved inorganic carbon (DIC) from groundwater was the main form of riverine DIC. The dynamics of CH4, CO2*, and DIC in the river were primarily hydrology-controlled, that is, [CH4] and [CO2*] both increased with elevated discharge, total [DIC] decreased with elevated discharge while the proportion of biologically derived DIC increased with increasing discharge. The concentration of dissolved organic carbon (DOC) showed a weak relationship with river hydrology in summer and autumn and was likely influenced by the combined sewer overflows. Carbon emission to the atmosphere is estimated to be 3.10 ± 0.61 kg C·m−2·yr−1 normalized to water surface area, with more than 99% emitted as CO2. Annual carbon loss to the coastal estuary is approximately 4.69 ± 0.70 Gg C yr−1, with annual DIC export approximately double that of DOC. Per unit area, the River Kelvin was a smaller carbon source to the atmosphere than natural rivers/streams but shows elevated fluxes of DIC and DOC under comparable conditions. This research illustrates the role urban systems may have on riverine carbon dynamics and demonstrates the potential tight link between urbanization and riverine carbon export.  相似文献   

5.
The results of studies of the hydrological and hydrochemical regimes carried out in 2001 in Chayvo Bay and microbiological analyses of the abundance of geterotrophic microorganisms belonging to ecological-trophic groups are given. Data on the concentrations of petroleum hydrocarbons, phenols, and metals (Fe, Pb, and Cd) in water and bottom sediments were collected. The obtained data were used to assess the water quality in the bay.  相似文献   

6.
A typological map of wetlands in the southern taiga of West Siberia has been compiled based on high-resolution Landsat images. In accordance with the new map, the area of southern-taiga wetlands is estimated at 12.02 Mha at the total wetland area percentage in the subzone estimated at 28%. The final accuracy of determination of various wetland classes is 80%. The use of the new map improved the estimates of methane emissions from southern-taiga wetlands from 0.84 to 1.57 MtCH4/year, i.e., by 87%. The respiration of wetland ecosystems in the southern taiga of the West Siberia is estimated at 67 MtCO2/year.  相似文献   

7.
Thermodynamic conditions (first of all, temperature) are the main dynamic factors in the transformation process of ferrous to ferric iron (TFFI). TFFI usually takes place within a temperature range of 473–843 K (most active at temperatures above 673 K) and does not require presence of the oxidizing agents above 673 K. Analysis of the chemical composition of different rocks and minerals indicates that only for some sedimentary rocks is the relative content of ferrous iron oxide less than its value in magnetite, and this value is minimal for oceanic sediments. The relative content of ferrous iron oxide in oceanic magmatic rocks exceeds this value in continental magmatic rocks and depends on the rate of rock cooling. An investigation of the role of the titanium oxide content of different rocks on stability of ferrous iron oxide against its transformation to ferric iron oxide shows that a significant correlation (r = 0.79) does exist between the relative content of ferrous iron oxide and ratio of TiO2/Fe2O3. Temperature within the solar nebula at location of the Earth was within the temperature range of the TFFI. During the Earth accretion and its early evolution, ferric iron oxide was unstable and most likely did not exist. The first magnetic minerals containing ferric iron could have appeared only after the Earth’s surface had cooled below ∼843 K. The formation of the first Algoma-type banded iron formations could be used as a marker of the Earth’s surface cooling below ∼843 K.  相似文献   

8.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Tomography sounding data for the first half of November 2007 are presented. The sounding was conducted over three points located at the same meridian—Yuzhno-Sakhalinsk (47° N, 143° E), Poronaisk (49° N, 143° E), and Nogliki (51° N, 143° E)—in order to find the possible influence of a tropical cyclone on the upper ionosphere. A change in the foF2 parameter by on average no more than 10–20% is a possible response of the upper ionosphere localized over the tropical cyclone (TC) zone (in the given case, 25°–30° northward and 5°–20° eastward) at a distance of approximately 3800–5500 km from it. A decrease or, vice versa, an increase in foF2 is related to the delay of the measurement moment relative to the beginning of the TC action. The complexity of a morphological analysis of the given event is that a tropical cyclone is a “wideband” (in the longitudinal and, to a lesser degree, in the latitudinal directions) and lasting disturbance source.  相似文献   

10.
本文利用2012年4月30日至5月10日华北地区大气湍流实验资料,分析了冬小麦田下垫面温度、湿度、二氧化碳(CO2)和甲烷(CH4)的湍流统计和输送特征,利用涡旋相关法计算的CH4通量值确定了松弛涡旋累积(REA)法计算CH4通量的经验系数.结果表明,不稳定层结下,温度、湿度、CO2和CH4的归一化标准差随稳定度参数z/L的关系满足-1/3幂次关系.热量、水汽和CO2水平方向的湍流输送和垂直方向的比值与稳定度参数z/L存在一定的相关关系,但CH4没有类似特征.实验期间,感热通量数值较低,潜热通量较高;CO2在夜间表现出微弱的向上输送,其余时段为向下输送,可以认为实验站所在地区是碳汇;CH4的湍流输送整体为向下输送,无明显的日变化规律,可以认为是CH4汇.利用松弛涡旋累积法获取CO2和CH4通量的参数取值分别为0.61和0.30.  相似文献   

11.
The study of formation and dissociation of CO 2 hydrate in porous media was characterized by magnetic resonance imaging (MRI) system in in situ conditions. This work simulated porous media by using glass beads of uniform size. The growth and dissociation habit of CO2 hydrate was observed under different temperature and pressure conditions. The induction time and the hydrate saturation during the growth and dissociation process in different sizes of porous media were obtained by using the MRI signal intensity. The results indicate that hydrate growth rate and the induction time are affected by the size of porous media, pressure, and degree of supercooling. There are three hydrate growth stages, i.e., initial growth stage, rapid growth stage and steady stage. In this study,the CO2 hydrate forms preferentially at the surface of vessel and then gradually grows inward. The hydrate tends to cement the glass beads together and occupies the pore gradually. As the hydrate decomposes gradually, the dissociation rate increases to the maximum and then decreases to zero.  相似文献   

12.
13.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

14.
南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究   总被引:4,自引:1,他引:4       下载免费PDF全文
天然气水合物(主要是甲烷水合物)因其重要的资源、环境意义越来越受人们关注.其在海底沉积物中的稳定存在及分布受温度、压力、甲烷供应量等因素的控制,勘探工作中,经常把似海底反射层(BSR)对应于甲烷水合物的稳定带底界(BHSZ).通过对南海北部地区甲烷水合物BHSZ与BSR的对比研究,我们发现在南海北部部分地区二者并不一致,二者之间的误差较大且呈一定的规律性分布,在神狐地区北部,水深较浅、沉积速率较快,BHSZ与BSR的误差为负,绝对值达192%;而在水深较深、基底为隆起的、沉积速率相对慢的神狐东南部,BHSZ与BSR的误差逐渐过渡到为正值,误差约为45%,我们综合分析了由速度-深度关系、BSR深度处反射时间、海底温度、平均热导率、静水/静岩压力模型、水合物稳定P-T方程等参数、流体活动性等计算参数可导致的的误差范围,最后认为导致BHSZ与BSR之间误差的主要因素可能是对BSR的理论认识上,在南海北部地区地震反射识别的部分BSR对应的可能是游离气带顶界(TFGZ)或古BSR或仅仅是由近水平地层或不整合面封存的含气层,而非传统意义上对应于BHSZ的BSR.而造成BHSZ与BSR规律性分布的基础地质因素则可能为在张裂基底上不同构造部位发育的不同的沉降、沉积过程及其热响应,进而造成不同的甲烷生成量、聚集量以及不同的水合物系统相对沉积物的迁移速率,最后产生不同深度的游离气顶界或不同深度的残留异常"古BSR"或含气层.  相似文献   

15.
上地幔中广泛存在低速高导层,对这些低速高导层成因的研究可以帮助我们了解上地幔物质的组成、分布以及地幔动力学过程.目前,地球科学家把上地幔低速高导层的主要成因归结为水或熔体的作用.本文主要介绍了水和熔体在上地幔中的赋存状况、对地震波速的衰减作用以及对电导率的影响.最后本文评述了含水模型和含熔体模型,并对电导率研究进行了展望.  相似文献   

16.
Surface waters associated with peatlands, supersaturated with CO2 and CH4 with respect to the atmosphere, act as important pathways linking a large and potentially unstable global repository of C to the atmosphere. Understanding the drivers and mechanisms which control C release from peatland systems to the atmosphere will contribute to better management and modelling of terrestrial C pools. We used non‐dispersive infra‐red (NDIR) CO2 sensors to continuously measure gas concentrations in a beaver pond at Mer Bleue peatland (Canada); measurements were made between July and August 2007. Concentrations of CO2 in the surface water (10 cm) reached 13 mg C l?1 (epCO2 72), and 26 mg C l?1 (epCO2 133) at depth (60 cm). The study also showed large diurnal fluctuations in dissolved CO2 which ranged in amplitude from ~1·6 mg C l?1 at 10 cm to ~0·2 mg C l?1 at 60 cm depth. CH4 concentration and supersaturation (epCH4) measured using headspace analysis averaged 1·47 mg C l?1 and 3252, respectively; diurnal cycling was also evident in CH4 concentrations. Mean estimated evasion rates of CO2 and CH4 over the summer period were 44·92 ± 7·86 and 0·44 ± 0·25 µg C m?2s?1, respectively. Open water at Mer Bleue is a significant summer hotspot for greenhouse gas emissions within the catchment. Our results suggest that CO2 concentrations during the summer in beaver ponds at Mer Bleue are strongly influenced by biological processes within the water column involving aquatic plants and algae (in situ photosynthesis and respiration). In terms of carbon cycling, soil‐stream connectivity at this time of year is therefore relatively weak. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
为查明三峡水库蓄水初期典型支流水-气界面CO_2和CH_4通量的日变化特征,采用LGR在线分析仪-通量箱法,于2015年9月初在库腹一级支流草堂河回水区开展连续24 h的定位观测.结果表明,24 h监测期内,支流库湾水-气界面CO_2通量变幅为-81.642~180.991 mg/(m~2·h),呈"昼吸夜放"特征,均值为17.346 mg/(m~2·h),总体为释放特征;CH_4全天均表现为释放状态,释放通量均值为0.064 mg/(m~2·h),呈"昼弱夜强"变化.相关分析结果表明,CH_4和CO_2释放通量与风速呈正相关,与表层水温、溶解氧浓度、叶绿素a浓度呈负相关,说明风速物理扰动、浮游植物光合作用是控制草堂河水-气界面气体通量最重要的环境因素.同时,干-支流相互作用形成的特殊水环境(如异重流、水温分层)也与水-气界面温室气体通量过程密切相关,但是其作用机制更为复杂,应开展进一步系统观测和深入研究.  相似文献   

18.
This work considers the kinematics of the source of the main geomagnetic field (MGF) near the core-mantle boundary under the Caribbean region. This source was selected because (i) its trajectory for the reviewed 110 years crosses this boundary, (ii) the region belongs to the so-called cemeteries of the tectonic plates, and (iii) numerous works have studied the structural heterogeneities of the lower mantle in this region with seismic tomography. Our study of the structural heterogeneities of the lower mantle and the trajectory of the MGF source indicates that the relics of the ancient tectonic plates in this region not only reach the coremantle boundary but could penetrate to the liquid core as well to the depth of 300 km. The “cemeteries” of the tectonic plates span significant areas in size. If the topographic heterogeneities of the core-mantle boundary, which are formed by the relics of the ancient tectonic plates, reach several hundreds of kilometers, then they can significantly affect the kinematics of individual structured flows in the liquid core and, consequently, change the spatial structure of secular MGF variations on the Earth’s surface.  相似文献   

19.
Pollack and Chapman have shown that the surface heat flow in continental regions is dependent not only on the earth's crust below the observation site, but also on the upper mantle there. Therefore heat flow can be used to investigate the role of the thermal conditions in the creation of the electrically conductive zones in both the crust and mantle.Empirical exponential formulas describe the depth to the conductivity increase in the crust corresponding to granitization, the depth to the conductive zone at the top of the asthenosphere (SLVZ), as a function of heat flow. Comparing the latter with temperature estimations in the asthenosphere it is concluded that partial melting of the upper mantle occurs only where q ? 42m W m?2 ? 1HFU.The depth to the conductivity increase corresponding to the mineralogic phase transition in the upper mantle is increased with high temperatures. Such a conductive zone shows that the maximum temperature difference between stable platform areas and active zones is about 1000°C.  相似文献   

20.
Although the identification of the moisture sources of a region is of prominent importance to characterize precipitation, the origin and amount of moisture towards the Indian Subcontinent and its relationship with the occurrence of precipitation are still not completely understood. In this article, the origin of the atmospheric water arriving to the Western and Southern India during a period of 5 years (1 January 2000–31 December 2004) is investigated by using a Lagrangian diagnosis method. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity of thousands of air particles aimed to the study area following the observed winds. During the summer monsoon, the main supply of moisture is the Somali Jet, which crosses the equator by the West Indian Ocean. The recycling process is the main water vapour source in winter. Two additional moisture sources located over northwestern India and the Bay of Bengal are identified. A 30% increase in the moisture flux from the Indian Ocean has been related to the occurrence of strong precipitation in the area, and at the end of the monsoon, the recycling became a significant contribution to the last part of the wet season of Western and Southern India. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号