首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
益生菌可改善机体微生态平衡,在促进营养吸收、控制肠道感染和调节免疫功能等方面具有特殊的功效,但存在胃肠道环境难定植、口服生物利用度低等问题。生物被膜是多个细菌黏附于非生物或生物表面,分泌胞外聚合物(extracellular polymeric substances),并将自身包裹其中形成的一种有组织的细菌集团,包含胞外多糖(exopolysaccharides,EPS)、蛋白质、胞外DNA(extracellular deoxyribonucleic acid, eDNA)和脂质等多种组成成分,是一个具有三维立体空间结构的聚集体。被膜状态的益生菌较浮游菌在抗逆性、对抗病原菌和调节免疫功能等方面具有明显优势,这些特点为新型益生菌的开发提供了新的研究思路。本文阐述了被膜状态益生菌的优势,重点介绍了促进益生菌生物被膜形成的活性物及其形成机制,简述了益生菌生物被膜的安全性问题。当前,益生菌生物被膜的研究尚处于起步阶段,希望本文能为该领域未来的研究提供参考。  相似文献   

2.
细菌生物被膜与食品生物危害   总被引:1,自引:0,他引:1  
食源性病原菌生物被膜是威胁食品安全的一个重大隐患。生物被膜一旦在食品加工过程中形成,易引起相当严重的交叉污染和加工后污染,产生极大危害,从而导致一系列严重的健康问题。本文就食源性病原菌生物被膜的分布、形成机制以及防治措施进行了综述。  相似文献   

3.
白念珠菌是临床最常见的一种能产生生物被膜的致病真菌,所产生的生物被膜是导致高度耐药性和临床白念珠菌反复感染的直接原因.近年来,科学家们开始关注天然产物的抗生物被膜活性,以及不同药物联合应用的抗生物被膜效果,该文对抗白念珠菌生物被膜药物的研究进展作一综述.  相似文献   

4.
病原菌形成的生物被膜严重威胁人类健康,显著增强了病原菌的耐药性,针对生物被膜的特效药物亟待研究。从虾、蟹壳等中提取得到的壳寡糖是一种天然碱性寡糖,具有良好的杀菌效果,但其对生物被膜的抑制作用仍有待提高。螺旋藻(Spirulina,SP)是一种表面带负电荷的微藻,其与壳寡糖形成的复合物可能发挥协同增效杀灭生物被膜深处病原菌的作用。针对提升壳寡糖的抑生物被膜作用,本研究首先通过浊度法筛选得到了杀菌效果显著的壳寡糖,并通过静电吸附作用将壳寡糖与螺旋藻结合,完成螺旋藻@壳寡糖(Spriulina@Chitooligosaccharides,SP@COS)复合物的制备。通过测定zeta电位、粒径和荧光标记等方法表征了壳寡糖和螺旋藻的结合情况,紫外-可见吸收光谱(ultraviolet-visible absorbance spectroscopy,UV-Vis)结果显示出螺旋藻对壳寡糖的包封率达90%,负载率达16%。制备的SP@COS对细菌、真菌生物被膜都有明显的增效抑制作用,且这种抑制效果主要是通过深入生物被膜内部、破坏细胞结构所实现。这些结果显示了螺旋藻-壳寡糖复合物具备作为生物被膜抑制剂的潜力,为提高壳寡糖的抑生物被膜作用、解决病原菌的危害提供了理论基础与新的思路。  相似文献   

5.
作为人类条件性感染的前三大病原菌之一的铜绿假单胞菌,是一种革兰氏阴性细菌,对免疫功能低下和囊性纤维化患者可以造成严重和持续性感染。造成这种持续感染的原因主要是由于细菌接收外界信号后,在自身调控网络的协同作用下,会依附于固体表面,并产生胞外多糖、基质蛋白和胞外DNA等大分子物质形成高度结构化的膜状复合物将自身包裹形成生物被膜群体结构。生物被膜可以有效帮助细菌定殖、提高细菌对抗菌物质和宿主免疫反应的抵抗能力、促进群落细菌的细胞-细胞之间的信号交流等,是临床治疗中病原菌慢性感染和反复感染最重要的原因之一。本篇综述重点介绍了铜绿假单胞菌生物被膜的各组成成分及其在生物被膜形成中的重要功能,并进一步阐述了群体感应系统(las、rhl、pqs与iqs)和c-di-GMP对铜绿假单胞菌生物被膜形成的调控作用。通过本篇综述可以更清晰地了解细菌生物被膜形成和调控的过程,为开发新的治疗生物被膜感染策略提供帮助。  相似文献   

6.
生物被膜极大提高了微生物本身的耐药性(比浮游态细菌高1000-倍)和对环境的适应能力(温度、压强、氧化剂、以及p H),而另一方面医用材料本身会导致异物入侵造成的机体免疫力下降。因而,生物被膜给医用材料植入带来了更大的感染风险,也推动了医用抑菌材料的不断改进和发展。对医用材料中微生物组成的研究以及生物被膜形成机理的逐步揭示成为了抑菌材料发展的导向。抑菌材料的改性主要通过更换材质和形成涂层等方式来改变材料表面的物化性质,其中涂层法是目前被大量尝试的热点。本文简要介绍了医药材料在安全性方面面临的问题以及生物被膜理论研究的主要成果,并详细讨论了抗生素、抑菌金属离子、氧化剂、群体感应淬灭分子、酶等被尝试用于材料涂层抑制生物被膜形成的原理、实例、以及优劣。最后,本文对未来抗生物被膜类抑菌材料的发展趋势进行了展望。  相似文献   

7.
大量研究报道生物被膜细菌对抗生素的耐药性是浮游菌的10–1 000倍,据报道细菌生物被膜是80%以上细菌感染的罪魁祸首,对医疗保健领域构成了严峻的挑战。植物提取物及其活性成分对细菌生物被膜有明显的抑制作用,包括减少生物被膜量、生物被膜活菌数以及清除已经成熟的生物被膜等。该文对这些有效的植物提取物及其活性成分进行了总结,并分析了其抗细菌生物被膜的作用机制。旨在为防治细菌生物被膜感染的植物类药物的开发提供参考。  相似文献   

8.
生物被膜是微生物附着在生物或非生物表面所形成的一种三维结构,细胞被其自身所产生的胞外聚合物所包围,生物被膜的形成被认为是微生物应对生物和非生物胁迫时所产生的一种自我防御机制。众多微生物能够在植物叶、维管束和根等组织中生长,并在植物不同组织表面附着形成生物被膜,病原细菌的生物被膜随植物内部环境动态变化是其有效发挥致病作用的关键,研究植物病原细菌生物被膜调控机制是认识植物-病原菌互作的重要方面。文中将系统地介绍植物病原细菌生物被膜特征、组成成分、分子调控机制及最新研究进展。  相似文献   

9.
病原体的耐药性很强,其生物被膜(biofilm,BF)的形成是导致耐药性的主要原因之一。生物被膜一旦形成,根除难度很大,会导致患者持久性感染,引发多种慢性疾病,并给全球医疗体系带来沉重负担。柱芳烃(pillararenes)是一类具有独特柱状结构的新型大环化合物,由于其在构建功能化和生物活性材料开发中的潜在应用引起人们广泛的关注。此外,它们在预防和控制抗生素耐药性(antimicrobial resistance,AMR)方面具有广阔的应用前景。本文综述了柱[5]芳烃衍生物对细菌病原菌的抗菌活性,并进一步揭示其在抗菌活性中的抑菌机制,尤其是对生物被膜的抑制作用。在此基础上,探索新的抑菌杀菌策略,用非传统药物以解决抗生素耐药性问题,以期为开发新的抗菌剂防控生物被膜或治疗细菌感染提供理论依据。  相似文献   

10.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

11.
This study investigated the in vitro effect of propolis ethanolic extract (PEE) on planktonic growth and biofilm forming abilities of five commercial probiotics (Enterol, Protexin, Normaflore, BioGaia and Linex). Broth microdilution method was used to investigate the susceptibility of the microbes of five commercial probiotics to PEE. Crystal violet assay was used for the quantitative assessment of biofilm formation and mature biofilm eradication tests. Effect of PEE on autoaggregation ability and swarming motility of Normaflore microbes was determined. Planktonic forms of probiotics showed varied susceptibilities with minimal inhibitory concentration values in the range of 100–800 µg/mL of PEE. However, low PEE concentrations significantly enhanced the planktonic growth of Linex and BioGaia microbes. Biofilm studies revealed that Enterol and Protexin were non-biofilm formers, while BioGaia, Linex and Normaflore showed weak biofilms, which were inhibited by 12.5, 25, and 800 µg/mL of PEE, respectively. PEE revealed double-face effect on the biofilms of Normaflore and Linex, which were enhanced at low concentrations of PEE and inhibited at higher concentrations. Interestingly, Normaflore biofilms were shifted from weak to strong biofilms at low PEE concentrations (12.5, 25, and 50 µg/mL). In conclusion, PEE has strain dependent controversial effects on the planktonic growth and biofilm forming ability of the tested probiotics, although high concentrations have inhibitory effect on all of them, low concentrations may have strain dependent prebiotic effect.  相似文献   

12.
Dental caries is induced by oral biofilm containing Streptococcus mutans. Probiotic bacteria were mainly studied for effect on the gastrointestinal tract and have been known to promote human health. However, the information of probiotics for oral health has been lack yet. In this study, we investigated influence of various probiotics on oral bacteria or cariogenic biofilm and evaluated candidate probiotics for dental caries among them. The antimicrobial activity of the spent culture medium of probiotics for oral streptococci was performed. Probiotics were added during the biofilm formation with salivary bacteria including S. mutans. The oral biofilms were stained with a fluorescent dye and observed using the confocal laser scanning microscope. To count bacteria in the biofilm, the bacteria were plated on MSB and BHI agar plates after disrupting the biofilm and cultivated. Glucosyltransferases (gtfs) expression of S. mutans and integration of lactobacilli into the biofilm were evaluated by real-time RT-PCR. Among probiotics, Lactobacillus species strongly inhibited growth of oral streptococci. Moreover, Lactobacillus species strongly inhibited formation of cariogenic biofilm model. The expression of gtfs was significantly reduced by Lactobacillus rhamnosus. The integration of L. rhamnosus into the biofilm model did not exhibit. However, L. acidophilus and L casei integrated into the biofilm model. These results suggest that L. rhamnosus may inhibit oral biofilm formation by decreasing glucan production of S. mutans and antibacterial activity and did not integrate into oral biofilm, which can be a candidate for caries prevention strategy.  相似文献   

13.
Pediococcus pentosaceus, a bacterium recently used in human and animal probiotics, was used in combination with supports made from polylactic acid composite soybean meal was used to study biofilm formation, and it was found that dense biofilms developed by Day 1. Proteomic comparison between planktonic and biofilm cultures of P. pentosaceus showed distinct expression patterns of intracellular and extracellular proteins. Type I glyceraldehyde-3-phosphate dehydrogenase was upregulated in biofilm cultures and mediated cell adhesion and encouraged biofilm production. GMP synthase, which regulates GMP synthesis and acts as an intracellular signal molecule to control cell mechanisms and has been exploited in the development of new therapeutic agents, was also upregulated in the biofilm mode of growth. The present work serves as a basis for future studies examining the complex network of systems that regulate lactic acid bacterial (LAB) biofilm formation and can serve as a framework for studies of production of therapeutic agents from LAB.  相似文献   

14.
Adherence capacities of oral lactobacilli for potential probiotic purposes   总被引:2,自引:0,他引:2  
Samot J  Lebreton J  Badet C 《Anaerobe》2011,17(2):69-72
The most abundantly used probiotic strains come from the genus Lactobacillus and only a few studies have investigated their role in oral health. Even if a positive correlation has been established between the saliva Lactobacillus count and dental caries, this genus is generally recognized as safe (GRAS). Moreover, lactobacilli could in some cases play a beneficial role by inhibiting the growth of some oral pathogenic bacteria. This activity could justify their use as probiotic. To establish the potential health benefit of probiotic candidates, appropriate in?vitro tests are required, particularly on their adhesive capacity. The aim of this work was to investigate the adhesive properties and surface characteristics of 70 oral lactobacilli that could be used as probiotics for oral health. For this, three methods were used: biofilm formation on a glass surface and on saliva-coated hydroxyapatite discs and the microbial adhesion to solvent method. The results of the biofilm formed on glass surface showed 13 strains with an adhesion score equal to or higher than 3. 57/70 (81%) of the tested lactobacilli did not form any biofilm on glass surfaces. All of the 13 strains formed biofilms on HA discs. Among these 13 strains, 10/13 (77%) showed low surface hydrophobicity (0-35%) and 3/13 (23%) showed medium hydrophobicity (36-70%). Some of the selected strains showed potentially useful adhesive capacity. This work paves the way for the selection of probiotics that could be used for oral health purposes with the aim to reduce carious risk.  相似文献   

15.
Conover MS  Mishra M  Deora R 《PloS one》2011,6(2):e16861
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.  相似文献   

16.
Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control.  相似文献   

17.
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.  相似文献   

18.
The structure of biofilms can be numerically quantified from microscopy images using structural parameters. These parameters are used in biofilm image analysis to compare biofilms, to monitor temporal variation in biofilm structure, to quantify the effects of antibiotics on biofilm structure and to determine the effects of environmental conditions on biofilm structure. It is often hypothesized that biofilms with similar structural parameter values will have similar structures; however, this hypothesis has never been tested. The main goal was to test the hypothesis that the commonly used structural parameters can characterize the differences or similarities between biofilm structures. To achieve this goal (1) biofilm image reconstruction was developed as a new tool for assessing structural parameters, (2) independent reconstructions using the same starting structural parameters were tested to see how they differed from each other, (3) the effect of the original image parameter values on reconstruction success was evaluated, and (4) the effect of the number and type of the parameters on reconstruction success was evaluated. It was found that two biofilms characterized by identical commonly used structural parameter values may look different, that the number and size of clusters in the original biofilm image affect image reconstruction success and that, in general, a small set of arbitrarily selected parameters may not reveal relevant differences between biofilm structures.  相似文献   

19.
Bacterial biofilm removal processes due to shear and catastrophic sloughing have been investigated in a turbulent flow system under conditions of carbon versus oxygen substrate limitations and varying aqueous phase calcium concentrations. Biofilm cellular and extracellular polymer carbon, total biofilm carbon and mass, and biofilm calcium concentrations are measured for pure culture biofilms of the facultative aerobe, Pseudomonas putida ATCC 11172. Results indicate oxygen-limited biofilms reach a higher steady-state biofilm organic carbon level than carbon-limited biofilms. Oxygen-limited biofilms also exhibit (1) a higher extracellular polymer-carbon: cell-carbon ratio throughout biofilm development and (2) a higher biofilm calcium content than carbon-limited biofilms. Increasing aqueous phase calcium concentrations increase the amount of biofilm calcium in both cases; the rate of calcium accumulation in oxygen-limited biofilms increases with increasing liquid phase calcium concentrations over the entire range studied while the rates of calcium accumulation in carbon-limited biofilms appear independent of aqueous phase calcium concentrations above 11.0 mg/L. Oxygen-limited biofilms with their higher extracellular polymer and calcium content exhibit shear removal rates that are 20-40% of those observed for carbon-limited biofilms. However, it is the oxygen-limited biofilms that experience catastrophic sloughing events. The carbon-limited biofilms studied here never sloughed even if subjected to intentional long-term deprivation of all nutrients. Reduced shear removal and the susceptibility to sloughing of the oxygen-limited biofilms are attributed to their more cohesive structure bought about by their relatively greater extracellular polymer production.  相似文献   

20.
Drinking water systems are known to harbour biofilms, even though these environments are oligotrophic and often contain a disinfectant. Control of these biofilms is important for aesthetic and regulatory reasons. Study of full-scale systems has pointed to several factors controlling biofilm growth, but cause-and-effect relationships can only be established in controlled reactors. Using laboratory and pilot distribution systems, along with a variety of bacterial detection techniques, insights have been gained on the structure and behaviour of biofilms in these environments. Chlorinated biofilms differ in structure from non-chlorinated biofilms, but often the number of cells is similar. The number and level of cellular activity is dependent on the predominant carbon source. There is an interaction between carbon sources, the biofilm and the type of pipe material, which complicates the ability to predict biofilm growth. Humic substances, which are known to sorb to surfaces, appear to be a usable carbon source for biofilms. The finding offers an explanation for many of the puzzling observations in full scale and laboratory studies on oligotrophic biofilm growth. Pathogens can persist in these environments as well. Detection requires methods that do not require culturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号