首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Z  Guo W 《Nano letters》2012,12(7):3650-3655
We show by density functional theory calculations with both hybrid and semilocal functionals that cubic boron nitride (111) nanofilms are intrinsically metallic and even turn into semiconductors once the thickness is less than 0.69 nm, which is in sharp contrast to the known insulating nature of boron nitride materials. The exceptional metallic or semiconducting band gap is due to a combined effect of thickness-dependent inbuilt electric polarization and labile near-gap states unique in the polar nanofilms. The band gap and dipole moment of the nanofilms can be further significantly tuned by applying an in-plane strain. These distinguished features of the boron nitride nanofilms are robust to surface passivation and can be enhanced by hybridizing with diamond films, thereby opening an exciting prospect of using the versatile cubic nanofilms in future electronic and piezoelectric devices.  相似文献   

2.
Designing electrocatalysts with strong electronic metal-support interaction can effectively regulate the electronic properties of metal active centers, therefore maximizing the catalytic performance. As a proof of concept, heteroatoms doped carbon with CoPt alloy and isolated Co single atoms (CoPt CoSA@NSC) are synthesized using CoPt bimetallic metal-organic framework as the precursor in this work. The existence of CoSA on the carbon substrate leads to more electron transfer between CoPt and the support, and appropriate upward shift of the d band center of the catalysts, which can effectively reduce the reaction barrier of rate determine step and boost the catalytic performance of CoPt alloy. The enhanced catalytic activity and stability of CoPt CoSA@NSC are demonstrated experimentally. Remarkably, the overpotential for hydrogen evolution reaction is only 23 mV at 10 mA cm−2 and the half-wave potential for oxygen reduction reaction is 0.90 V, both exceeding the commercial Pt/C benchmark. In addition, CoPt CoSA@NSC also exhibits great potential as a cathode electrocatalyst for Zn–air battery, in terms of large open circuit potential of 1.53 V, high power density of 184 mW cm−2, as well as superior cycling stability. This work provides a novel strategy for regulating the electronic structure and catalytic performance of alloy based electrocatalysts.  相似文献   

3.
Highly boron-doped diamond films were deposited on silicon substrate by hot filament chemical vapor deposition in a gas mixture of hydrogen and methane. The chemical bonding states, surface texture, and electrical resistivity of these films were analyzed by X-ray photoelectron spectroscopy, scan electron microscope, and four-point probe method. It was found that boron dopants play an important role in the texture and chemical bonding states of the diamond films. An appropriate concentration of boron dopants (B/C ratio of 10 000 ppm) can simultaneously improve crystal quality and reduce resistivity of the diamond films. The minimum resistivity of diamond films reaches 1.12 × 10−2 Ω cm, which is applicable as electrodes.  相似文献   

4.
Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the  OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts.  相似文献   

5.
Single-atom catalysts based on metal–N4 moieties and embedded in a graphite matrix (defined as M N C) are promising for oxygen reduction reaction (ORR). However, the performance of M N C catalysts is still far from satisfactory due to their imperfect adsorption energy to oxygen species. Herein, single-atom Fe N C is leveraged as a model system and report an adjacent Ru-N4 moiety modulation effect to optimize the catalyst's electronic configuration and ORR performance. Theoretical simulations and physical characterizations reveal that the incorporation of Ru-N4 sites as the modulator can alter the d-band electronic energy of Fe center to weaken the Fe O binding affinity, thus resulting in the lower adsorption energy of ORR intermediates at Fe sites. Thanks to the synergetic effects of neighboring Fe and Ru single-atom pairs, the FeN4/RuN4 catalyst exhibits a half-wave potential of 0.958 V and negligible activity degradation after 10 000 cycles in 0.1 m KOH. Metal–air batteries using this catalyst in the cathode side exhibit a high power density of 219.5 mW cm−2 and excellent cycling stability for over 2370 h, outperforming the state-of-the-art catalysts.  相似文献   

6.
Herein, inspired by natural sunflower heads’ properties increasing the temperature of dish-shaped flowers by tracking the sun, a novel hybrid heterostructure (MoS2/Ni3S2@CA, CA means carbon nanowire arrays) with the sunflower-like structure to boost the kinetics of water splitting is proposed. Density functional theory (DFT) reveals that it can modulate the active electronic states of Ni Mo atoms around the Fermi-level through the charge transfer between the metallic atoms of Ni3S2 and Mo Mo bonds of MoS2 to boost overall water splitting. Most importantly, the finite difference time domain (FDTD) could find that its unique bio-inspired micro-nano light-trapping structure has high solar photothermal conversion efficiency. With the assistance of the photothermal field, the kinetics of water-splitting is improved, affording low overpotentials of 96 and 229 mV at 10 mA cm−2 for HER and OER, respectively. Moreover, the Sun-MoS2/Ni3S2@CA enables the overall alkaline water splitting at a low cell voltage of 1.48 and 1.64 V to achieve 10 and 100 mA cm−2 with outstanding catalytic durability. This study may open up a new route for rationally constructing bionic sunflower micro-nano light-trapping structure to maximize their photothermal conversion and electrochemical performances, and accelerate the development of nonprecious electrocatalysts for overall water splitting.  相似文献   

7.
The paper reports on design, fabrication and characterization of piezoresistive sensors based on boron doped nanocrystalline diamond (NCD) layers. The shape and position of the piezoresistive element was optimized using finite element 3D modeling. Mechanical and piezoresistive simulations were performed. The piezoresistive sensing boron doped diamond thin films were realized on SiO2/Si3N4/Si substrates by microwave plasma enhanced chemical vapor deposition (CVD) and the piezoresistive structures were formed by reactive ion etching. The extensive study of sensor parameters e.g. deformation sensitivity, edge and contact resistances, temperature dependences gauge factor, temperature coefficient of resistance and bridge output voltage was performed. The highest gauge factor at higher temperatures (GF = 7.2 at 250 °C) was observed for moderate doping level (boron to carbon ratio of 3000 ppm). One of the aims was the extraction of piezoresistive coefficients of fabricated diamond layers for utilization in a finite element piezoresistive solver.  相似文献   

8.
X.J. Hu  J.S. Ye  S. Mariazzi 《Thin solid films》2008,516(8):1699-1702
Doppler broadening measurements were performed on undoped, boron doped, and sulfur doped diamond films. The defect properties in these different diamond films were analyzed and the effect of boron concentration in the B-doped diamond films on these properties was studied. The Doppler broadening measurements were characterized with the shape parameter S and the wing parameter W. From these fitted characteristic S and W values of the diamond films and plots of S vs. position implantation energy, it was deduced that undoped and S-doped diamond films are rich of vacancy-like defects, while B-doped diamond films are poor of vacancy-like defects. This difference may originate from possible different charge state of the vacancy-like defects and from the incorporation of impurities in the different growth ambient of the films. By comparing the parameters obtained in the Doppler broadening measurements of diamond films with different boron concentration, we found that S values of B-doped diamond did not decreased with the increasing of boron concentration, which suggests that more damaged regions form in the higher boron concentration samples.  相似文献   

9.
The electrocatalytic nitrogen reduction reaction (NRR) to synthesize NH3 under ambient conditions is a promising alternative route to the conventional Haber–Bosch process, but it is still a great challenge to develop electrocatalysts’ high Faraday efficiency and ammonia yield. Herein, a facile and efficient exfoliation strategy to synthesize ultrathin 2D boron and nitrogen co-doped porous carbon nanosheets (B/N C NS) via a metal–organic framework (MOF)-derived van der Waals superstructure, is reported. The results of experiments and theoretical calculations show that the doping of boron and nitrogen can modulate the electronic structure of the adjacent carbon atoms; which thus, promotes the competitive adsorption of nitrogen and reduces the energy required for ammonia synthesis. The B/N C NS exhibits excellent catalytic performance and stability in electrocatalytic NRR, with a yield rate of 153.4 µg·h−1·mg−1 cat and a Faraday efficiency of 33.1%, which is better than most of the reported NRR electrocatalysts. The ammonia yield of B/N C NS can maintain 92.7% of the initial NRR activity after 48 h stability test. The authors’ controllable exfoliation strategy using MOF-derived van der Waals superstructure can provide a new insight for the synthesis of other 2D materials.  相似文献   

10.
Abstract

Laser pump and X-ray probe core-level photoemission experiments probe surface photovoltage transients on p-type Si(111) surfaces. The data are consistent with a picture where the dynamics of mobile surface charge dominate the photovoltage shift, with changes in the surface-states charge density of only secondary importance. A value for the equilibrium band bending is determined, which suggests that a residual oxide layer reduces the density of surface states.  相似文献   

11.
The development of flexible microelectronic systems requires the construction of high-energy-output planar micro-supercapacitors (MSCs). Herein, the localized electron density, by introducing graphene quantum dots (GQDs) on the surface of electrodes, is regulated. The enhanced local field intensity promotes ion electrostatic adsorption at the solid–liquid interface, which significantly improves the energy density of MSCs in the confined space. Local electronic structure has been investigated from the perspective of the topological analysis of the electron localization function (ELF) and the electron density. Impressively, the edges of the simulated structure exhibit a higher electron density distribution than the C C skeleton. This finding indicates that the introduced GQDs reinforce the intrinsic electrical double-layer capacitance (EDLC) and the oxygen-bearing functional groups at the edge, further increasing the pseudocapacitance performance. Moreover, the edge electron aggregation effect enables the all-carbon-based symmetric MSCs to exhibit ultra-high areal capacitance (21.78 mF cm−2) and excellent cycle stability (86.74% retention after 25 000 cycles). This novel surface local charge regulation strategy is also applied for intensifying ion electrostatic adsorption on Zn-ion hybrid MSCs (polyvalent metal ions) and ion-gel electrolyte MSCs (non-metallic ions). With excellent planar integration, this device demonstrates excellent flexibility and has potential applications in timing and environmental monitoring.  相似文献   

12.
Chemical vapour deposition (CVD) diamond films were irradiated by 1 keV argon ions at room temperature with doses ranging from 3.6 × 1012 to 1.1 × 1016 Ar+ cm2. The influence of sputtering on the valence band density of states of a boron-doped CVD diamond film was investigated by ultraviolet photoelectron spectroscopy and the changes in the plasmon features were observed by X-ray photoelectron spectroscopy of the carbon Is core level and its loss region. A gradual change from typical diamond features to amorphous carbon was observed after prolonged bombardment times. Above a critical dose Dcrit of 5.8 × 1014 Ar+ cm2 the damaged surface layer is characterized by a splitting of the C Is bulk peak into two components: a bulk-like diamond peak at 285.3 eV binding energy and a defect peak with 1 eV lower binding energy, which is attributed to the production of an amorphous sp2-rich carbon matrix. Moreover additional occupied states in the range of 0–4 eV binding energy, completely different to those observed on reconstructed diamond surfaces, were observed in the valence band spectra of the ion-irradiated diamond surface. These filled states can also be attributed to the amorphous carbon matrix which is formed at high doses. At very low doses (< 3 × 1014 ions cm2) only a band bending of the C Is diamond core level peak, along with the formation of some occupied states in the band structure at around 3.8 eV binding energy was observed. A comparison with annealed hydrogen-free CVD diamond surfaces shows some similarities concerning these filled states. The obtained spectra are compared with other crystalline and amorphous forms of carbon and the results are discussed in terms of an irradiation-induced change in the atomic structure of the surface. A comparison of ion bombarded and annealed diamond samples clearly shows that no graphitization takes place in the latter case.  相似文献   

13.
Transparent conducting oxides (TCO) have integral and emerging roles in photovoltaic, thermoelectric energy conversion, and more recently, photocatalytic systems. The functional properties of TCOs, and thus their role in these applications, are often mediated by the bulk electronic band structure but are also strongly influenced by the electronic structure of the native surface 2D electron gas (2DEG), particularly under operating conditions. This study investigates the 2DEG, and its response to changes in chemistry, at the (111) surface of the model TCO In2O3, through angle resolved and core level X‐ray photoemission spectroscopy. It is found that the itinerant charge carriers of the 2DEG reside in two quantum well subbands penetrating up to 65 Å below the surface. The charge carrier concentration of this 2DEG, and thus the high surface n‐type conductivity, emerges from donor‐type oxygen vacancies of surface character and proves to be remarkably robust against surface absorbents and contamination. The optical transparency, however, may rely on the presence of ubiquitous surface adsorbed oxygen groups and hydrogen defect states that passivate localized oxygen vacancy states in the bandgap of In2O3.  相似文献   

14.
This study examines the intramolecular structures of individual fullerene molecules on a Si(111)-7 x 7 surface using an ultra-high vacuum scanning tunneling microscope. This study also discusses possible configurations of fullerene molecules with related orientations and electronic states of fullerene. A self-assembled layer of fullerene on a Si(111) surface is produced using special annealing treatments. The resulting electronic states and band gap energy can be estimated from I-V curves. Finally the field emission parameters, such as turn-on field and field enhancement factor beta, are determined using a traditional detecting system.  相似文献   

15.
Electrochemical CO2 reduction reaction (CO2RR) is a promising strategy for waste CO2 utilization and intermittent electricity storage. Herein, it is reported that bimetallic Cu/Pd catalysts with enhanced *CO affinity show a promoted CO2RR performance for multi-carbon (C2+) production under industry-relevant high current density. Especially, bimetallic Cu/Pd-1% catalyst shows an outstanding CO2-to-C2+ conversion with 66.2% in Faradaic efficiency (FE) and 463.2 mA cm−2 in partial current density. An increment in the FE ratios of C2+ products to CO  for Cu/Pd-1% catalyst further illuminates a preferable C2+ production. In situ Raman spectra reveal that the atop-bounded CO is dominated by low-frequency band CO on Cu/Pd-1% that leads to C2+ products on bimetallic catalysts, in contrast to the majority of high-frequency band CO on Cu that favors the formation of CO. Density function theory calculation confirms that bimetallic Cu/Pd catalyst enhances the *CO adsorption and reduces the Gibbs free energy of the C C coupling process, thereby favoring the formation of C2+ products.  相似文献   

16.
The structural and electronic environment about implanted radioactive 111In(→111Cd) probe atoms as a function of annealing temperature in a single crystal of ZnO(0 0 0 1) has been monitored on an atomic scale using perturbed angular correlation technique, a nuclear hyperfine method. This technique is based upon the hyperfine interaction of the nuclear electric quadrupole moment or magnetic moment of the probes, respectively, with the electric field gradient or magnetic hyperfine field arising from the extra-nuclear electronic charges and spin distributions. The probe atoms 111In were recoil-implanted at room temperature following heavy-ion nuclear reactions. The electric quadrupole interaction was measured at room temperature for as-implanted and annealed samples. The thermal annealing in ambient nitrogen up to 1000 °C showed a progressive reduction of disorder around the probe atom as evidenced via continual decrease in width of the distribution of quadrupole interaction frequencies. Present measurements suggested that annealing at 800 °C for 30 min in flowing nitrogen is enough to produce an optimum recovery of crystallinity. After annealing of radiation damage at 1000 °C we observed an axially symmetric electric field gradient which is characterized by the unique quadrupole interaction frequency of 30.6(3) MHz and a frequency distribution of width nearly zero. The observed electric field gradient was attributed to substitutional incorporation of probe atoms at cation-sites of ZnO. In contrast to annealing in ambient nitrogen at 1000 °C, air annealing of 111In implanted ZnO samples revealed change in local stoichiometry about probe atoms which is attributed to the internal oxidation of the indium probes. The measured electric field gradient and asymmetry parameter at cation-sites of ZnO have been compared with theoretical calculations using a simple point charge model.  相似文献   

17.
《Vacuum》2008,82(11-12):1416-1420
A photoluminescence (PL) study at room temperature was accomplished as a complement to well-established structural and morphological characterization techniques such as μ-Raman, FTIR, XRD, XPS or SEM. Considering the wide electronic band gap of pure diamond (5.45 eV), the near ultraviolet excitation (325 nm) from an HeCd laser source was selected. The observed nanocrystalline diamond (NCD) and microcrystalline CVD diamond (MCD) samples were obtained by microwave plasma (MPCVD) from hydrogen poor Ar/H2/CH4 mixtures. The PL spectrum of both NCD and MCD samples is dominated by the 1.681 eV emission with significant intensity and energy variations. The well-known 1.681 eV band related to the Si-vacancy colour centre is much more pronounced in MCD. In addition, for NCD, the band shifts to higher energies with thickness, suggesting two mechanisms for the silicon incorporation: co-deposition from the plasma and diffusion from the substrate. The samples were further characterized by μ-Raman spectroscopy, X-ray diffraction and scanning electron microscopy, structurally and morphologically.  相似文献   

18.
Diamond is a unique semiconductor for the fabrication of electronic and opto-electronic devices because of its exceptional physical and chemical properties. However, a serious obstacle to the realization of diamond-based devices is the lack of n-type diamond with satisfactory electrical properties. Here we show that high-conductivity n-type diamond can be achieved by deuteration of particularly selected homo-epitaxially grown (100) boron-doped diamond layers. Deuterium diffusion through the entire boron-doped layer leads to the passivation of the boron acceptors and to the conversion from highly p-type to n-type conductivity due to the formation of shallow donors with ionization energy of 0.23 eV. Electrical conductivities as high as 2omega(-1) x cm(-1) with electron mobilities of the order of a few hundred cm2 x V(-1) x s(-1) are measured at 300 K for samples with electron concentrations of several 10(16) x cm(-3). The formation and break-up of deuterium-related complexes, due to some excess deuterium in the deuterated layer, seem to be responsible for the reversible p- to n-type conversion. To the best of our knowledge, this is the first time such an effect has been observed in an elemental semiconductor.  相似文献   

19.
The subject of this work is focused on characterization of the microstructures and orientations of SiC crystals synthesized in diamond–SiC–Si composites using reactive microwave sintering. The SiC crystals grown on the surfaces of diamonds have either shapes of cubes or hexagonal prisms, dependent on crystallographic orientation of diamond. The selection of a specified plane in diamond lattice for the TEM investigations enabled a direct comparison of SiC orientations against two types of diamond facets. On the {111} diamond faces a 200 nm layer of 30–80 nm flat β-SiC grains was found having a semi-coherent interface with diamond at an orientation: (111)[112]SiC║(111)[110]C. On the {100} diamond faces β-SiC forms a 300 nm intermediate layer of 20–80 nm grains and an outer 1.2 µm layer on top of it. Surprisingly, the SiC lattice of the outer layer is aligned with the diamond lattice: (111)[110]SiC║(111)[110]C.  相似文献   

20.
采用第一性原理的密度泛函理论(DFT)研究了(5,5)碳纳米管(CNT)顶端硼(B)、氮(N)、硅(Si)等元素双掺杂体系的电子场发射性能.结果表明,在外电场下,各种双掺杂CNT帽端态密度(DOS)向价带移动.电子轨道分布变化显著,电荷分布明显局城化.根据电子态密度、差分电荷密度、最高分子占据轨道(HOMO)/最低分子非占据轨道(LUMO)分布等计算结果可预期Si双掺杂后更有利于场致电子发射.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号