首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
金属离子掺杂LiMnPO_4的电化学性能研究   总被引:2,自引:0,他引:2  
采用高温固相法合成了LiMn0.8Fe0.2PO4/C、LiMn0.8V0.2PO4/C和LiMn0.6Fe0.2V0.2PO4/C3种复合正极材料,XRD测试表明LiMn0.6Fe0.2V0.2PO4具有较大的晶胞体积,扫描电镜测试表明其颗粒尺寸细小均匀,最大颗粒不超过3μm。充放电测试表明其放电倍率为0.1C时的首次放电比容量是118mAh/g,另外,容量衰减率和循环伏安测试同时表明复合掺杂两种离子的LiMn0.6Fe0.2V0.2PO4电极材料循环稳定性能较好。  相似文献   

2.
以FePO4·4H2O,LiOH·H2O,LiF和柠檬酸为原料,采用一步固相混合烧结法制得F掺杂LiFePO4/C材料,研究了烧结温度和F掺杂量对LiFePO4/C电化学性能的影响。XRD和SEM分析表明,所得样品均为橄榄石型LiFePO4,颗粒粒径在1~2μm。电化学测试表明,LiFePO3.97F0.03/C在0.1C下的初始放电容量为144.7mAh·g^-1,1C放电比容量为123mAh·g^-1且具有良好的循环性能。  相似文献   

3.
利用高温固相反应法在惰性气氛下合成了掺Mn的LiFePO4正极材料.考察了Mn2 的掺杂浓度对于目标化合物结构及其电化学性能的影响.应用XRD、循环伏安和恒流充放电等方法对产物进行了结构表征和性能测试.结果表明,产物具有单一的橄榄石型结构,Mn2 掺杂并未影响目标产物的结构,而是与LiFePO4形成了LiFe1-yMnyPO4(y为Mn的掺杂浓度)固溶体.目标产物具有优良的电化学性能.充放电测试表明,在0.1C倍率下放电,LiFe0.5Mn0.5PO4材料的首次放电比容量达129.1mAh/g,在4.1及3.5V处各存在一个放电平台.充放电循环20次循环后,容量仍保持在120.9mAh/g.利用循环伏安测试分析了Mn的改性效果及锂离子在目标化合物中脱嵌的过程.  相似文献   

4.
钴酸锂(LCO)作为锂电池正极材料,在电子产品领域有非常广泛的应用,但由于高电压下会导致其晶相的不可逆相变从而导致循环稳定性降低,因此如何提高钴酸锂在高电压下的电化学稳定性一直是研究热点。为了改善钴酸锂的电化学稳定性,采用固相球磨-烧结法合成了Al-Mg共掺杂的LCO材料。采用X射线衍射(XRD)和扫描电镜(SEM)及电化学性能测试表征晶体结构、形貌和测量其循环稳定性。结果表明:Mg、Al进入钴酸锂晶格内部后有效地提高了其电化学稳定性,当Al掺杂量为0.1%,Mg掺杂量为1%时,在0.5C的倍率,3~4.5V的电压下,首圈放电比容量可达136.7mAh/g, 100圈后的容量保持率可达76.2%,同时也表现出了良好的倍率性能。  相似文献   

5.
两步掺杂合成法制备LiFePO4-C复合材料及其性能   总被引:1,自引:0,他引:1  
通过两步掺杂碳采用高温固相反应法合成了锂离子电池正极LiFePO4-C复合材料.利用SEM、XRD、TG/DTA等方法对该正极材料的晶体结构、表面形貌、粒径大小和热反应进行了分析研究.实验结果表明,LiFePO4-C具有单一的橄榄石结构,前驱体掺杂14%(质量分数)、预分解后掺杂6%(质量分数)葡萄糖合成的材料具有良好的充放电性能和循环稳定性能.在0.1C倍率下进行充放电测试,首次放电比容量可达158.5mA·h/g,具有良好的电化学性能.  相似文献   

6.
Ti离子掺杂对LiFePO4材料性能的影响   总被引:2,自引:1,他引:1  
采用固相法合成了锂离子电池正极材料LiFePO4.为了提高LiFePO4的电化学性能,用Ti4 对LiFePO4进行掺杂.通过X射线衍射分析及电化学测试,研究了Ti掺杂对材料的结构和电化学性能的影响.以Li3PO4为锂源,(C4H9O)4Ti为掺杂源,合成了单一相Li1-xTixFePO4(x=0.005、0.01、0.02和0.03).实验研究表明,掺入少量的Ti4 ,可以减小晶胞体积,有效地提高了LiFePO4的循环性能和比容量.当(C4H9O)4Ti的掺入量为1 mol%时,在50mA/g的充放电电流下,首次放电比容量为123 mAh/g;经过60次循环后,容量基本上无衰减.  相似文献   

7.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征.XRD分析表明,掺杂少量Ni2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145 mAh·g-1,高于纯的LiFePO4正极材料的容量90 mAh·g-1,经100次循环后掺杂Ni2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%.  相似文献   

8.
采用"熔融浸溃法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料LiMn1.9Mg0.104-yFy(y=0.03、0.05、0.1);煅烧温度为700、750和800 ℃.通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM对样品进行了形貌研究.当y=0.05时样品表面光滑,粒度分布范围小.用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,随着材料制备温度的升高,电池的初始放电容量逐渐增加,但充放电循环的容量损失也逐渐增加;而在800下℃,y=0.05时,其初始放电容量高达117 mAh/g;60次充-放电循环后,容量保持其初始容量的83%,该材料具有高的放电容量和优良的循环性能.  相似文献   

9.
锂离子电池正极材料LiMn2O4的合成及其电化学性能研究   总被引:14,自引:1,他引:14  
以Li2CO3为Li源,化学MnO2(CMD)和电化学MnO2(EMD)为Mn源,以乙醇水混合物为分散介质,采用固相反应法合成了可充电锂离子电池正极材料LiMn2O4尖晶石,并采用XRD,BET,TEM和电化学测试对材料进行了表征。结果表明,750℃制备的样品呈良好的尖晶石结构,比表面积分别为4.8m^2/g和2.8m^2/g,产物的分布均匀,平均粒径为200nm。在0.4mA/cm^2(0.2-0.5C)和3.0-4.35V条件下恒流充放电,其首次放电容量大于110mAh/g ,效率大于90%,并具有较好的循环可逆性。考察 反应温度对材料比表面积的影响。  相似文献   

10.
主要介绍了目前国内外合成LiMnPO4材料的主要方法,包括固相法、溶胶-凝胶法、水热法、喷雾干燥法等,同时总结了对LiMnPO4材料进行包覆和掺杂改性的研究现状,并提出了LiMnPO4材料今后的发展方向.  相似文献   

11.
本文以葡萄糖作为碳源,采用溶剂热法进行原位碳包覆合成了Fe_2O_3/ZnFe_2O_4/C材料,研究了材料的结构及电化学性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安扫描(CV)和恒流充放电技术对材料结构及电化学性能进行了表征。结果表明,采用此法合成的Fe_2O_3/ZnFe_2O_4/C复合材料呈现多孔结构,粒径约为250nm,经历40次循环后材料的可逆容量依然能保持在645.7mAh/g,较未包覆碳材料的电极提高了19.0%,其可逆容量和循环稳定性能得到了显著提升。  相似文献   

12.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

13.
LiFePO4的制备及其电化学性能研究   总被引:8,自引:1,他引:8  
朱伟  樊小勇  胡杰  潘复生 《功能材料》2004,35(6):734-735,738
介绍用工艺较简单的溶肢凝肢法制备橄榄石结构的LiFePO4锂离子电池正极材料。讨论了不同的烧结温度和烧结时同等条件对材料电化学性能的影响。掺杂Cu后,以0.2mA/cm^2放电。放电容量145mAh/g。  相似文献   

14.
刘学武  李新  邓远富  施志聪  陈国华 《功能材料》2013,44(10):1381-1384
采用固相湿磨并热处理,以酚醛树脂为碳源,合成了锂离子电池正极材料LiMn1-xMgxPO4/C(x=0,0.01、0.04、0.05和0.1)。制备的样品具有相似的形貌,掺杂的镁离子半径较小导致了晶格收缩,从而使颗粒细小且分布均匀。充放电测试和交流阻抗表明,由于镁离子掺杂加快了电化学动力学反应过程,而明显提高了材料的电化学性能。600℃煅烧得到的LiMn0.96Mg0.04 PO4/C材料在0.05C倍率下具有144mAh/g的放电容量;高放电倍率下,以恒流-恒压-恒流模式进行充放电测试,LiMn0.96Mg0.04PO4/C复合正极材料显示出良好的循环性能及倍率性能。  相似文献   

15.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

16.
LiFePO4材料的制备与电池性能的研究   总被引:2,自引:0,他引:2  
通过固相法合成了裂解碳包覆的具有亚微米球形颗粒团簇微结构的LiFePO4粉体材料.材料中裂解碳百分含量为5.01%,一次颗粒粒径在200~600nm,团簇体粒径在10μm左右.在0.1、0.2、0.5和1C的充放电速率下,研究了材料的比容量和循环稳定性的变化.当充放电速率<1C时,随着充放电速率的增大,材料的充放电平台和比容量并不随速率的增大而发生较大变化,当充放电速率≥1C时,材料的充放电电压平台迅速升高(充电)或降低(放电),比容量也有较大的降低;随着充放电次数的增加,材料的比容量有所增加,然后趋于稳定.在30个循环后材料的放电比容量分别为131.7、129.1、123.5和114.4mAh/g.  相似文献   

17.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

18.
采用原位聚合方法对硬碳材料进行了导电聚合物包混,并测试了导电聚合物包混硬碳材料的电化学性能.利用扫描电镜,拉曼光谱,电导率仪及恒电流法研究了导电聚合物包混的硬碳材料的结构以及充放电特性.研究发现,聚苯胺、聚吡咯和聚噻吩等均能通过原位聚合包混在硬碳表面.其中,采用噻吩在硬碳表面原位聚合增强了硬碳材料的导电性.经聚噻吩包混的硬碳首次充电容量达到了385mAh g-1以上,高于未包混的硬碳(320mAh g-1).循环20周以后聚噻吩包混硬碳的容量仍保持在325 mAh g-1以上,而未包混硬碳的容量则降低到290 mAh g-1以下.  相似文献   

19.
李杏恩  任丽  王芳芳  韩杨 《功能材料》2013,(19):2819-2824
以葡萄糖酸亚铁为碳源和部分铁源,采用固相法制备了LiFePO4/C复合正极材料。利用XRD和SEM对所得样品进行了结构与形貌表征。以LiFePO4/C作锂二次电池正极组装电池,用电化学工作站和充放电测试系统对样品进行电化学性能测试。当碳包覆量为4.75%,650℃烧结10h时所制备的LiFePO4/C复合材料在0.1、0.2和1C倍率下最高放电比容量分别为161.6、147.2和123.3mAh/g。1C倍率下经50次循环材料的放电比容量无衰减。实验结果表明,由于葡萄糖酸根和铁离子之间较强的化学键,阻止了葡萄糖酸根热解过程中在材料内部的不均匀扩散,其热解后在材料颗粒表面形成均匀导电碳层,并在颗粒之间形成丝状无定形碳,有效抑制了晶粒的生长,提高了活性物质利用率,形成了完整的导电网络,增强了材料的综合电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号