首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The microstructural evolution of laser-welded 960 MPa grade high strength steel joints and its effect on softening behavior of heat affected zone (HAZ) were investigated in this paper. The results show that microstructure of HAZ and fusion zone (FZ) is composed of lath martensite and bainitic ferrite. The microstructure of mixed grained zone presents strip-like characteristics and small block martensite distributes along the grain boundary. The grain size near the fusion line is about 25 μm, and the grain size in the fine grain zone is less than 5 μm. Microhardness of HAZ and FZ is lower than base metal. The soft zone locates in transitional region between tempering zone and mixed grained zone due to the interaction of the martensite tempering and the recovery and recrystallization of the rolled microstructure. Microhardness of soft zone is 310 HV and drops 18% compared to base material. Welding heat input has a remarkable effect on the width of soft zone and microhardness. The tensile properties of weld joints are closely related to the softening behavior of HAZ.  相似文献   

2.
The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel 35Si2CrMnVB, C0.34, Sil.66, Mn0.80, Cr0.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Si1.75, Mn0.76, P0.021,S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible.  相似文献   

3.
The influence of rust layers on the corrosion behavior of ultra-high strength steel 300 M subjected to a simulated coastal atmosphere was investigated by corrosion weight loss, surface analysis techniques, and electrochemical methods.The results exhibit the presence of a large proportion of c-Fe OOH and a-Fe OOH and a small amount of Fe3O4 in the outer rust layer. During the wet–dry cyclic process, the bonding performance and the density of outer rust layer deteriorate with the thickness of outer rust. The inner rust layer plays a main role on protectiveness, which can be attributed to the formation of an ultra-dense and adherent rust film with major constituent of a-Fe OOH and a-Fe2O3 on the steel.  相似文献   

4.
Methods to estimate the strain–life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain–life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain–life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.  相似文献   

5.
《中国铸造》2010,7(1):96-96
<正>Enhancing the performance of materials under extreme conditions and promoting energy-efficient materials for manufacturing processes are two critical issues for the  相似文献   

6.
A modified Johnson–Cook model for the flow behavior of alloy 800H at intermediate strain rates and high temperatures is presented. The modification is based on a study of the relation between strain hardening and both strain rate and softening parameters. The predicted stresses obtained using the modified model are compared to those obtained using the original Johnson–Cook model. The parameters constitute the two models are determined using the inverse method, Kalman filter. The results show that the modified model fits the experimental data very well for different combinations of strain rates and temperatures, with a mean value of R-squared regression of 0.90 for the modified model and 0.74 for the original Johnson–Cook model.  相似文献   

7.
Kanthal APMT® is an FeCrAlMo alloy optimized for continuous service up to 1,250 °C (~2,300 °F). Rapid solidification powder metallurgy applied on this FeCrAlMo composition provided an oxide dispersion strengthened microstructure. The alloy exhibits an attractive combination of resistance to oxidation and corrosion and excellent form stability. In this study, oxidation and corrosion properties were investigated, as well as mechanical properties at elevated temperature. It was shown that an adherent alumina layer on the alloy surface formed during service that provided excellent resistance to corrosion attacks in most industrial atmospheres and gave great advantages compared to chromia forming high temperature Ni-base alloys in terms of maximum operating temperature and life. Focus was set on oxidation and creep properties but also other important aspects are discussed.  相似文献   

8.
9.
林栋梁  吴建生 《金属学报》1984,20(1):62-152
本文研究了淬火温度对4330M钢在蒸馏水中的应力腐蚀裂纹扩展速率的影响。实验表明,淬火温度从870℃上升到1100℃时,裂纹扩展速率da/dt显著下降(相差一个数量级);从1100℃上升到1200℃时,裂纹扩展速率da/dt却稍提高,在1100℃处,da/dt有一最小值。断口分析表明,随淬火温度升高,应力腐蚀的断裂方式有所改变,870,1000℃淬火的试样系沿晶断裂,而1100,1200℃淬火试样则是穿晶准解理断裂。 用饱和苦味酸溶液腐蚀显示奥氏体晶界,通过奥氏体晶界腐蚀沟槽深度估算出杂质磷在奥氏体晶界的平衡偏聚浓度,它和淬火加热温度之间的关系符合Mclean的平衡偏聚理论。磷在奥氏体晶界的偏聚是造成应力腐蚀裂纹扩展速率da/dt变化的主要原因。 采用杂质原子偏聚和氢对脆性断裂影响的理论,对各种实验现象加以解释,并认为杂质原子在晶界偏聚和氢共同作用的氢脆断口是沿晶断裂型,而单纯氢起作用的氢脆断口是穿晶准解理断裂型。  相似文献   

10.
The effect of the preliminary high strain-rate deformation, performed via the method of dynamic channel-angular pressing (DCAP), and subsequent annealings on the tribological properties of a dispersionhardened Cu–0.092 wt % Cr–0.086 wt % Zr alloy has been investigated. It has been shown that the surfacelayer material of the alloy with a submicrocrystalline (SMC) structure obtained by the DCAP method can be strengthened using severe plastic deformation by sliding friction at the expense of creating a nanocrystalline structure with crystallites of 15–60 nm in size. It has been shown that the SMC structure obtained by the high strain-rate DCAP deformation decreases the wear rate of the samples upon sliding friction by a factor of 1.4 compared to the initial coarse-grained state. The maximum values of the microhardness and minimum values of the coefficient of friction and shear strength have been obtained in the samples preliminarily subjected to DCAP and aging at 400°С. The attained level of microhardness is 3350 MPa, which exceeds the microhardness of the alloy in the initial coarse-grained state by five times.  相似文献   

11.
This study investigated the microstructure, tensile and fatigue properties of Al–5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al–5 wt.%Mg based on the findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号