首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用石硫合剂提金法对高硫金精矿进行浸出试验,考察了SO3^2-、NH3·H2O、Cu2+浓度对浸出过程的影响。其结果表明:在磨矿细度-400目80%,液固比6:1,SO;一浓度0.1mol/L.NH3·H20浓度1.6mol/L,Cu^2+浓度0.04mol/L,Na2C03浓度0.1mol/L,搅拌速度500r/min,浸出温度40℃,浸出时间8h的条件下,金的浸出率达到88%左右;浸出过程中加入SO3^2-,保证Sx^2-和S2O3^2-的稳定性,并减少因S单质、CuS和Cu2S的沉积而阻碍浸金传质过程的影响;NH3·H2O不仅调节浸出pH值,而且与Cu^2+形成[Cu(NH3)4]^2+,促进金的浸出。  相似文献   

2.
陈江安  周源 《黄金》2004,25(8):29-30
对河南省某金矿的金精矿进行了LSSS法添加NaCl在常温下的浸取条件试验研究,在LSSS浸出过程中的液固质量比为3:1,c(NH3·H2O):0.5-0.8mol/L,c(NaCl)=0.8mol/L,温度为25℃,浸取时间为3h,金浸出率可达到94%以上。从而实现了在常温下、低NH3浓度浸取金的目的,同时可降低该工艺的生产成本。  相似文献   

3.
研究了用硫代硫酸钠从贵州卡林型金矿中浸出金,考察了Na2S2O3浓度、乙二胺浓度、Cu2+浓度、Na2SO3浓度和溶液pH值等不同因素对金浸出率的影响.试验结果表明:Na2S2O3浓度为0.35 mol/L,乙二胺浓度为0.1 mol/L,Cu2+浓度为0.075 mol/L,Na2SO3浓度为0.1 mol/L,溶液...  相似文献   

4.
张丽霞 《湿法冶金》2003,22(2):84-84
在湿法提金中 ,硫代硫酸盐是很有希望取代氰化物的化学试剂。溶液中存在氨和铜时 ,在碱性范围内 ,金更易被硫代硫酸盐浸出 ,形成金 -硫代硫酸盐配合物 :4Au 8S2 O2 - 3 O2 2 H2 O 4Au(S2 O3) 3- 2 4OH- (1 )当氨和铜的比例适当时 ,通过下列机理强烈催化上述反应 :Au Cu(NH3) 2 4 4S2 O2 - 3Au(S2 O3) 3- 2 Cu(S2 O3) 3- 2 4NH3(2 )4Au(S2 O3) 3- 2 O2 2 H2 O 1 6NH34Cu(NH3) 2 4 8S2 O2 - 3 4OH- (3 )与常规氰化过程相比 ,硫代硫酸盐浸出过程毒性低 ,试剂消耗低 ,浸出速率快 ,尤其对难处理矿石 ,如碳质金矿石。但…  相似文献   

5.
铜陵天马山含砷硫金精矿中金矿物嵌布粒度细且大部分被硫化矿包裹,致使金的氰化浸出难以进行。为了使金达到较好的浸出效果,在HCl-H2O2-添加剂体系中,对该金精矿进行了氧化预处理试验研究。在磨矿细度-0.048 mm占90%以上、矿浆浓度40 g/L、搅拌速度400 r/min、温度60℃、搅拌时间4 h、HCl浓度0.7 mol/L、H2O2浓度0.5 mol/L及添加剂乙二醇用量9 m L/L的氧化预处理条件下,Fe、As、Cu的溶解率分别为48.1%、99.3%和89.76%。金精矿经氧化预处理后,金的氰化浸出率比直接氰化浸出提高了33.6%,效果显著。该预处理方法可为同类含砷硫难选金精矿的开发利用提供一定的借鉴意义。  相似文献   

6.
探索了超声波作用对铜氨硫代硫酸钠浸金体系稳定性的影响。考察了不同浸出时间、温度、超声波功率、pH和氨水浓度条件下,浸金体系内硫代硫酸根离子浓度以及Cu(NH_3)_4~(2+)络合离子浓度变化规律。结果表明,超声波作用使硫代硫酸盐浸金体系稳定性有所降低,一定条件下可显著促进硫代硫酸根离子和Cu(NH_3)_4~(2+)络合离子浓度的降低。金矿石浸出试验表明,当Na_2S_2O_3浓度为0.1mol/L、CuSO_4浓度为0.03mol/L、NH_3·H_2O浓度为0.45mol/L时,超声波作用能够显著提高浸金率,在较低浸出温度下引入超声波辅助浸出就能达到常规较高温度下的浸出效果。本研究为降低硫代硫酸盐浸金反应的温度开辟了新的路径。  相似文献   

7.
采用测试和回归方程求极限的方法 ,研究了NH4Cl掺入下 ,5(NH4)2O·12WO3·5H2O的平衡溶解度。结果表明 ,当NH4Cl浓度为1mol/L、2mol/L、3mol/L时APT的溶解度分别为NH3·H2O -H2O系的1/2、1/3、1/4。NH4Cl浓度<1.5mol范围内 ,其对APT溶解度的影响较为明显。NH4Cl浓度>1.5mol/L后影响减弱。NH4Cl掺入下APT溶解度受温度的影响变小  相似文献   

8.
硫代硫酸盐提金是一种绿色环保的非氰提金方法,但高效回收金浸出液中的金尚待进一步研究。以甲基三辛基氯化铵(TOMAC)为萃取剂,考察了萃取条件(萃取剂浓度、相比、萃取时间)及金浸出液性质(pH、硫代硫酸盐浓度、初始Au(I)浓度)对TOMAC萃取Au(Ⅰ)性能的影响。结果表明:室温条件下,TOMAC为萃取剂能从硫代硫酸盐金浸出液中高效萃取Au(Ⅰ)。当A/O=1、pH=9、硫代硫酸盐浓度0.1 mol/L、TOMAC浓度1.8 g/L时,对低浓度金(0~25 mg/L)几乎能完全萃取;采用1 mol/L NaCl能有效反萃出TOMAC有机相中的Au(Ⅰ)。TOMAC萃取Au(Ⅰ)的机制为:TOMAC通过其表面的Cl-与溶液中的Au(Ⅰ)发生离子交换,形成[C25H54N]3[Au(S2O3)2]络合物。TOMAC对Au(S2O3)23-具有良好的萃取性能,可实现硫代硫酸盐金浸出液中Au(I)的高效回收,具有对硫代硫酸提金技术的潜在应用价值。  相似文献   

9.
硫代硫酸盐提金理论研究—金溶解动力学   总被引:6,自引:2,他引:4  
姜涛  吴振祥 《黄金》1992,13(1):35-39
采用腐蚀电化学方法研究了金在硫代硫酸盐溶液中溶解的动力学。无铜、氨时,金的溶解活化能为27.99kJ/mol,Cu(NH_3)_4~(2+)为0.01mol/L,总氨浓度为0.5mol/L时活化能降为15.54kJ/mol;在0.001~0.1mol/L范围内,Cu(NH_3)_4~(2+)的反应级数为1。动力学研究的结果进一步揭示了铜、氨在浸金过程中的催化作用,并再次证实了作者提出的氨性硫代硫酸盐溶液浸金的电化学—催化机理。  相似文献   

10.
崔晓燕  封玉新  丛琳  邴志宇 《黄金》2014,(11):88-90
在生物氧化提金生产产生的酸性氧化液中含有Fe、As、Zn、Cu、Pb、S等元素,质量浓度分别为Fe 25.00~45.00 g/L、As 2.00~9.00 g/L、Zn 0.10~0.30 g/L、Cu 0.01~0.07 g/L、Pb 0.02~0.03 g/L、S 12.00~30.00 g/L。其中,硫和砷分别以SO2-4(少量SO2-3)和As O3-4的形式存在,为了更准确地检测酸性含砷氧化液中的硫,经过多次实验,建立了一种适用于生物氧化提金生产氧化液中硫的分析方法,为企业生产提供了可靠、及时、准确的分析数据。  相似文献   

11.
NH4Cl—NH3·H2O—H2O系仲钨酸铵溶解度研究   总被引:5,自引:5,他引:0  
《中国钨业》2002,17(1):35-38
采用测试和回归方程求极限的方法,研究了NH4Cl掺入下,5(NH4)2O@12WO3@5H2O的平衡溶解度.结果表明,当NH4Cl浓度为1mol/L、2mol/L、3mol/L时APT的溶解度分别为NH3@H2O-H2O系的1/2、1/3、1/4.NH4Cl浓度<1.5mol范围内,其对APT溶解度的影响较为明显.NH4Cl浓度>1.5mol/L后影响减弱.NH4Cl掺入下APT溶解度受温度的影响变小.  相似文献   

12.
低品位含金硫精矿碱硫氧压浸金试验   总被引:1,自引:0,他引:1       下载免费PDF全文
对某低品位含金硫精矿开展氧压酸浸产元素硫、碱硫氧压浸取金银试验。酸浸试验最佳条件为:浸出温度130℃、浸出时间300min、浸出压力1.6 MPa、液固比4:1、始酸浓度20g/L、木质素2‰;碱硫氧压浸金试验最佳条件为:浸金剂(石灰+硫磺)为总干矿的40%、硫碱质量比0.35、催化剂Cu(NH_3)_4~(2+)0.06mol/L、活化剂木质素占干矿的0.2%、氧压0.4 MPa、温度105℃、浸金时间5h,在此条件下金、银的浸出率分别为88.23%和61.35%。  相似文献   

13.
改性石硫合剂(ML)浸金试剂稳定性研究   总被引:5,自引:0,他引:5  
改性石硫合剂(ML)是一种新型非氰浸金试剂。主要研究了不同通气量、碱度、铜离子浓度、亚硫酸根离子浓度、搅拌速度、温度对ML试剂中有效浸金成分的消耗影响。结果表明:(1)通气、碱度、搅拌速度对于ML试剂中S2O3^2-的消耗并不是主要影响因素;(2)铜离子对ML试剂中S2O3^2-的消耗影响显著。体系中有游离氨、低温时,ML试剂稳定性较好;(3)加入SO3^2-有助于ML体系的稳定,其主要作用是:可阻碍体系中S2O3^2-的氧化;能促进体系中沉淀物的返溶,并生成有效溶金成分。  相似文献   

14.
某金矿石的石硫加碱催化合剂法浸金研究   总被引:1,自引:0,他引:1  
某金矿石Au的品位为2.54 g·t-1,矿石以氧化矿为主,矿石中金嵌布粒度极细,与脉石互相包裹,难以解离,属于难浸类金矿石。石硫加碱催化合剂是一种混合型浸金药剂,它是以石硫合剂为基本组分,加入了稳定剂(亚硫酸钠等)与抗硫系(如S,As等)干扰剂(铜氨络离子)等,使用起来比石硫合剂方便。对矿石进行了石硫加碱催化合剂法搅拌浸金研究,考察了磨矿细度、氧化剂种类、H2O2浓度、矿浆pH、搅拌时间对金浸出率的影响。相比KMnO4,CaO2等氧化剂相比,H2O2具有浸金率高,工业生产操作方便等优点。确定最优实验条件为:液固比为2.0,磨矿细度-74μm占91%,所用氧化剂为H2O2,浓度为0.02 mol·L-1,pH值为12~13,搅拌时间为3.5~4.0 h,此条件下金浸出率可达72.6%。浮选法及氰化浸金法中金的回收率分别为70.5%和68.1%。与浮选法、氰化浸金方法比较,此方法具有药剂廉价易得、工艺简单、环保等优点,可望成为黄金提取的主要方法之一。  相似文献   

15.
高砷高硫金精矿固化焙烧-氰化浸出试验研究   总被引:2,自引:1,他引:2  
介绍了高砷高硫金精矿矿物成分、固化焙烧-氰化浸出工艺条件,探讨了焙砂氰化浸出的机理。试验结果表明,金精矿经固化焙烧,焙砂氰化浸出时加入适量混合氧化剂(H2O2 KMnO4)和助浸剂G能显著提高金的浸出率,金浸出率为88.4%,砷、硫固化率均为90%。  相似文献   

16.
石硫合剂法浸取废弃线路板中金的试验研究   总被引:1,自引:0,他引:1  
李晶莹  黄璐 《黄金》2009,30(10):48-51
试验研究了采用石硫合剂法浸取废弃线路板中的金。取废弃线路板粉末5 g,在固液比为1∶3、亚硫酸钠浓度为0.1 mol/L、硫酸铜浓度为0.03 mol/L、氨水浓度为0.5 mol/L、反应时间为2.5 h、反应温度为40℃、pH=10条件下,金的浸出率可达到85%以上。与硫脲、氰化等浸金方法比较,石硫合剂法具有无毒、廉价易得、工艺简单、操作方便等优点,是一种具有开发潜力的浸金技术。  相似文献   

17.
某金精矿预氧化除铜提高金氰化浸出率的试验研究   总被引:3,自引:1,他引:2  
该项试验研究了在加温条件下,浸出温度、浸出时间、金精矿粒度、NaCl浓度、H2SO4浓度等因素对化学预氧化除铜、氧化渣氰化浸金的影响。试验结果表明,在金精矿粒度-320目占90%、浸出温度95℃、初始c(H2SO4)=0.72mol/L、起始NaCl浓度0.67mol/L、液固比4∶1、浸出时间26h、搅拌速度750r/min的条件下,铜的浸出率可到达80%以上,氧化渣中金的氰化浸出率可达97.45%。  相似文献   

18.
采用酒石酸盐-硫代硫酸盐协同浸金体系,对某氧化型金矿开展了浸金试验研究,研究变量包括硫酸铜浓度、浸出时间、硫代硫酸钠和酒石酸钠浓度、溶液pH、温度等,确定了最佳浸出条件。结果表明,当硫酸铜、硫代硫酸钠、酒石酸钠的浓度分别为0.075、0.5、0.075 mol/L,浸出温度80℃,溶液pH为10.3,浸出时间9 h时,金浸出率可达96.03%。通过与氰化法和铜-氨-硫代硫酸盐体系的对比分析,铜-酒石酸盐-硫代硫酸盐体系浸金效果与氰化法相近,优于传统铜-氨-硫代硫酸盐提金体系。  相似文献   

19.
对某浮选银精矿采用氰化法、硫代硫酸盐法、硫脲法进行银浸出实验,以评估3种不同浸出方法对该银精矿浸出效果.研究结果表明:在最优的工艺参数下[氰化法:碱预处理后加入铵盐,氰化钠浓度0.15 mol/L,pH值为11,液固比(浸出液体积与试样质量之比,单位是mL/g,下同)2∶1,搅拌强度500 r/min,浸出时间为48 h;硫代硫酸盐法:氧化焙烧预处理,氨水浓度1.0 mol/L,硫酸铜浓度0.01 mol/L,硫代硫酸钠浓度0.2 mol/L,pH值为10,液固比4∶1,搅拌强度500 r/min,浸出时间12 h;硫脲法:氧化焙烧和稀硫酸预浸处理,Fe3+浓度7.5×10-3 mol/L,硫脲浓度0.18 mol/L,pH=1.0,液固比为3∶1,搅拌速度250 r/min,浸出时间24 h],硫代硫酸盐方法获得的Ag浸出率为78.58%,硫脲相应获得的Ag浸出率为62.43%,比氰化法获得的浸出率低约3.33%.  相似文献   

20.
采用NH3-NH4Cl-H2O体系柱浸方法浸出氧化锌矿。结果表明,在矿石粒度为0.1~10mm、双柱串联操作、第一柱中填料2 629g、第二柱填料1 314g、总氨浓度7.5mol/L、NH4Cl/NH3=2∶1、浸出液循环喷淋30d条件下,锌浸出率达到92.19%,浸出液中锌离子浓度达到54.38g/L。与瓶浸结果相比,柱浸工艺锌浸出率提高约4个百分点,浸出液中Zn2+浓度提高约11g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号