共查询到20条相似文献,搜索用时 15 毫秒
1.
利用函数的某些性质解决不等式的证明问题 ,在高等数学中是经常使用的方法 ,本文结合实例 ,利用函数的单调性来处理不等式的证明问题 .例 1 当 0 f (x) >limx→ π2 - 0f (x) ,而 limx→ 0 f (x) =1 ,limx→ π2 - 0f (x) =2π ,故 1 >sinxx >2π.例 2 当 x>0时 ,证明 :x -x22 相似文献
2.
函数的单调性是函数的重要性质之一 ,本文介绍它在解某些类型的数学题中的应用 .1 在方程问题中的应用例 1 (北京市高一数学竞赛 ,1998年初赛 )试确定方程3x2 -9 4x2 -16 5x2 -2 5 =12 0x的解集 .解 记 f(x) =3 x2 -9 4x2 -16 5x2 -2 5 , g(x) =12 0x .显然有x >0 ,且有f( 5 ) =g( 5 ) ,即 5是方程f(x) =g(x)的一个根 .下面我们证明 5是方程f(x) =g(x)的唯一的一个根 .容易证明 f(x)在 ( 0 , ∞ )是增函数 ,g(x) 在 ( 0 , ∞ )是减函数 .若方程 f(x) =g(x)除了 5以外还有另一根x0 ,当x0 >5时 ,… 相似文献
3.
单调性是函数的一个基本性质 ,该性质有广泛的应用 ,主要用于如下几个方面 :1 比较两个数的大小例 1 比较log2 (x + 1)与log2 ( 2x + 3)的大小 .简析 从题设的两个对数 ,便联想起y =log2 u在 ( 0 ,+∞ )上是单调函数 ,因此只要比较两个真数的大小 ,原题就可获解 .解 由 x + 1>0 ,2x + 3>0 ,解得x >- 1.当x >- 1时 ,有 0 - 1,且x≠ 0 ,n∈N ,n≥ 2 ,求证 :( 1+x) n>1+nx .简析 欲证 ( 1+x) n >1+nx ,需… 相似文献
4.
5.
函数的单调性是函数的重要性质 ,应用十分广泛 ,必须认真学好 .那么 ,怎样学好这个性质呢 ?1 切实掌握概念 ,打好学习基础课本指出 :设函数 f(x)的定义域为I ,如果对于属于定义域I内某区间上任意两个自变量的值x1,x2 ,当x1f(x2 ) ,那么 f(x)在这个区间上是增函数 (或减函数 ) .这个概念的核心是任意性和恒定性 .任意性是指x1,x2 是函数定义域内任意两个自变量 ,恒定性是指不等式 f(x1) f(x2 )是在x1相似文献
6.
7.
有一类关于函数单调性的判定问题 ,根据函数单调性的定义 ,可转化为恒成立问题后 ,方便、快捷地得以解决 .例 1 设函数 f(x) =logπ(ax2 + 2x)在 [2 ,4 ]上为单调递增函数 ,求a的取值范围 .浙江《中学教研 (数学 )》2 0 0 3年第 4期中 ,用分类讨论法求解此题 ,较繁 ,现简解之 .解 因为 f(x) =logπt在t∈ (0 ,+∞ )上为单调递增函数 ,所以只需t =ax2 + 2x在 [2 ,4 ]上为单调递增函数即可 .若设 2≤x1- 2x1+x2在 [2 ,4 ]上须恒成立 .由… 相似文献
9.
函数是高中代数中最基本也是最主要的内容,函数的单调性又是其重中之重.利用函数(数列)的单调性求证不等式的核心即求最大(小)值,而求最大(小)值,利用函数的单调性是最常用的一种方法.以下分六个方面举列说明"函数单调性"在求证不等式中的妙用.…… 相似文献
10.
11.
本文讨论了有关广义η-偏差函数的单调性,得到了广义η-偏差函数和其它相关偏差函数的精确不等式. 相似文献
12.
13.
某些涉及函数单调性的问题,我们可以根据函数值相等或不等.利用下面单调函数的性质对函数“f(x)”进行“穿脱”处理,从而达到化简的目的. 相似文献
14.
1 函数的迭代 我们先来看下面的例子 .例 1 某人逛商场 .他先付一元钱进入第一家商场 ,并在商场花了剩余的钱的一半 ,走出商场时 ,又付了一元钱 .之后 ,他又付一元钱进入第二家商场 ,在这里他花了剩余的钱的一半 ,走出商场时又付了一元钱 ,接着他又用同样的方式进出第三和第四家商场 ,当他离开第四家商场后 ,这时他身上只剩下一元钱 .问 :他进入第一家商场之前身上有多少钱 ?解 设该人进入第i个商场之前身上的钱为xi元 ,i=1,2 ,3,4,且设x5=1.于是xi 1=12 (xi- 1) - 1,(i=1,2 ,3,4)令 f(x) =12 (x - 1) - 1=12 (x 3) - 3… 相似文献
15.
函数单调性是函数重要的性质,其应用体现了函数的思想、转化的思想、数形结合的思想.充分利用函数单调性解题可以使原本复杂的问题简单化、明了化,灵活掌握并应用这一性质有利于培养学生分析问题的能力,提高学生数学思维的品质.应用函数单调性解题,在高考中历考弥新.笔者结合具体事例分析利用这一性质求解比较数或式的大小,证明不等式,求函数的值域、极值,参数的取值范围的确 相似文献
16.
文[1]用单调函数的性质,变更定义中的表达形式,非常简单地证明了一类不等式,读后深受启发.如果变更定义中的表达形式为f(x1)-f(x2)<0(或>0),f(x2)/f(x1)>1(或<1),解决我们常用数学归纳法证明的一类数列不等式,将收到较好的效果. 相似文献
17.
自 2 0 0 0年高考题给出关于“y =-xcosx”的部分图象的选择题后 ,有关涉及两个单调函数乘积的单调性问题就受到中学数学界的普遍关注 .例如已知x∈R ,f(x) =x2 - 1 ,g(x) =x ,试讨论F(x) =f(x)g(x)的单调性 .对于此类问题 ,学生感到陌生 ,教师感到新颖 ,那么我们如何去复习指导呢 ?近几年来 ,笔者在与高三学生面对面的交流中 ,获悉一些重点高中的数学教师对此类问题也出现了错误的判断与不正确的指导 ,有的甚至把“一个增函数与一个减函数的乘积必为减函数”抄写在黑板上当作“定理”来教学生 ,另外还发现相当数量的高… 相似文献
18.
我们知道单调函数Y=f(x)中的x与Y是一一对应的,这样可以把复杂的高次方程或超越方程f(x)=f(a)化为简单方程x=a,使问题化繁为简.这里构造函数是解决问题的关键. 相似文献
19.
20.
函数的单凋性是函数的重要性质,若利用定义求解,变形的技巧和方法是阻碍问题解决的难点,而利用导数研究单调性问题,可有效地突破这个难点,利用导数的相关知识来研究函数的单调性已成为高考的热点. 相似文献