首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of additive ethylenediaminetetraacetic acid (EDTA) on crystallization process were investigated by the induc-tion time of MgSO4-NaOH system. Nucleation and growth rates, growth mechanism and particle size distribution of magne-sium hydroxide precipitation were involved with. The induction time in unseeded and seeded precipitation of magnesium hydroxide with and without additive EDTA was measured. The conductivity method was used to determine the induction period. Theoretical relations of the induction time and supersaturation ratio for different growth mechanisms and a combined analysis on the induction time were applied to determine nucleation and growth rates. The growth mechanism of magnesium hydroxide precipitation was dis-closed by analyzing the experimental data with and without additive. The analysis on induction time indicated that additive EDTA had a significant influence on both nucleation and growth of magnesium hydroxide precipitation. The mechanism underlying the effect of EDTA on crystal growth was 2-dimension nucleation-mediated growth model.  相似文献   

2.
Continuous crystallization of adipic acid with ultrasound   总被引:1,自引:0,他引:1  
The application of a novel continuous cooling crystallization system coupled with ultrasound technology to crystallize adipic acid from an aqueous solution was investigated. Both continuous ultrasound irradiation and silent (control) regimes were used in order to elucidate the effects of unstable cavitation on the duration of the transient period, steady state operating conditions, crystal habit, and particle size distribution.The results reveal that under continuous ultrasonic irradiation the steady state particle size distribution is achieved after shorter times, with a consistent reduction of the steady state supersaturation resulting in increased product yields relative to silent continuous crystallization experiments. Continuous crystallization with ultrasonic irradiation results in significantly smaller crystal sizes, reduced agglomeration and an improved habit of crystals. Furthermore, the influence of mean residence time using continuous ultrasound produces a smaller change in particle size and size distribution. Finally, the experiments reveal a noticeable reduction of the fouling on non-cooling surfaces and underline the need for intermittent discharge to prevent classification on withdrawal product.  相似文献   

3.
采用间歇冷却结晶法研究了工业上生产磷酸二氢钠的原料湿法磷酸中典型阴离子杂质SO42-、F-、Cl- 等对磷酸二氢钠结晶过程的影响,并以诱导期表征晶核形成,以结晶速率表征晶体生长,以粒度分布、长径比衡量晶体形态。研究结果表明,随着SO42-含量的增加,磷酸二氢钠诱导期和晶体平均粒径逐渐降低,而结晶速率呈现先增加后降低的趋势;随着F-含量的增加,诱导期、结晶速率、平均粒径均逐渐增大;随着Cl-含量的增加,诱导期减小,而结晶速率变大,平均粒径先增大后减小。此研究成果可用于指导湿法磷酸制备磷酸二氢钠的工业生产。  相似文献   

4.
A Plexiglas vessel of a 0.30 m diameter filled with a diluted barium chloride solution and mixed by bubbling of an inert gas is used to model an industrial process. Solid sodium sulfate or sodium sulfate solution are added into the reactor to provoke the precipitation of barium sulfate. Two precipitation models, homogeneous and heterogeneous, are proposed. Especially, the heterogeneous precipitation model (much more complex than the homogeneous one) takes into account all elementary phenomena such as the dissolution of the solid phase, the nucleation in the liquid‐solid boundary layer and the nucleation and crystal growth in the bulk of liquid phase. Both models well predict the precipitate mean particle sizes. The decrease of the particle size in the case of the heterogeneous process is due to higher nucleation rate compared to the homogeneous process because of higher values of the sodium sulfate concentration in the boundary layer than those existing in the bulk.  相似文献   

5.
针对碱洗氧化工艺脱硫废水中硫酸钠的蒸发结晶,设计开发了硫酸钠蒸发结晶放大实验装置,重点研究了废水中碳酸钠、铁离子和亚硫酸钠杂质对硫酸钠蒸发结晶晶体粒度的影响。结果表明:1.0%(质量分数)的碳酸钠对硫酸钠晶体的粒径影响可忽略;铁以沉淀物形式存在时,易引起硫酸钠晶体结块且粒径变小; 铁以溶解形式存在时,对硫酸钠晶体的粒径影响较小;亚硫酸钠的存在易引起硫酸钠晶体的粒径变小,氧化消除溶液中的亚硫酸钠后,结晶得到的硫酸钠晶体粒径变大。工业装置经过改造后,无水Na2SO4产品的平均粒径由106.71 μm提高至129.99 μm。  相似文献   

6.
以甘氨酸水溶液的丙酮溶析结晶为对象,探讨了超声波对结晶过程的影响. 在超声波作用下,结晶过程经历空泡形成、超声波诱导成核、二次成核多个阶段;在不同的阶段施加超声波,或在相同时刻引入超声波但持续不同的时间,都可能影响晶体的粒径大小和分布. 在自然均相成核点之前施加超声波并持续较短时间,使晶核以超声波诱导成核为主时,可获得较大颗粒的晶体;在接近均相成核点处施加超声波,将产生更多的晶核,使晶体平均粒径降低. 在晶体生长过程中继续使用超声波,因超声波的破碎效应,也将降低晶体的平均粒径.  相似文献   

7.
A process for continuous synthesis of cross‐linked chitosan‐sodium tripolyphosphate (CS‐TPP) nanoparticles is optimized using microreactors for its comparison with a batch stirred reactor. The effect of various parameters including residence time, concentration of CS, pH of the CS solutions, and stabilizing surfactant concentration was modeled by population balance equations (PBEs) to determine size, growth, and nucleation rates of the CS‐TPP nanoparticles. The smallest particle size was obtained at lower residence time, lower concentration of CS, pH 5, and using a surfactant concentration above its critical micellar concentration. The particles obtained from the microreactors are agglomerated but are smaller in size as compared to those obtained from the batch reactor. The system was also optimized for the minimum particle size applying the estimated growth rate and the PBEs.  相似文献   

8.
We have investigated effects of the reaction conditions such as mixing of solution, reactant concentration, feeding time and molecular weight of alcohol solvents on the size and morphology of silicon oxide in a sol-gel process in Rushton type reactor. To describe the intensity of mixing of solution the power input, which means the energy dissipated in the solution, was used. The particle nucleation and growth processes of silicon oxide were varied with all the reaction conditions. However, the particle morphology of silicon oxide depended mostly on the reactant concentration and molecular weight of alcohol solvents under various reaction conditions. If the supersaturation level of silicon oxide in the solution was promoted by variation of reaction conditions, the particle nucleation and growth processes were facilitaled and it resulted in reduction of relative induction time and in increase of mean particle size of silicon oxide. To explain the principal mechanism of particle growth process of silicon oxide the two-step growth model was applied.  相似文献   

9.
Condensation, involving nucleation, growth, and ripening from a metastable state, is an important but complex phase transition process. The effect of physical parameters, including temperature, on condensation dynamics, the competition between homogeneous and heterogeneous (seeding) nucleation, and the separation of polymorphs are among several issues of practical interest. We present a model based on population dynamics that describes the time evolution of the particle size distributions for condensation of the fluid phase and consequent decline in supersaturation. The crucial effect of interfacial curvature on energy, and hence on particle size (Gibbs-Thomson effect), causes larger particles to be less soluble, so that smaller particles dissolve and eventually vanish (denucleate). Numerical solutions of the governing equations show the transition from nucleation and growth to ripening occurs over a relatively long time period. The influence of temperature on these phenomena is primarily through its effect on interfacial energy, growth rate coefficients, and equilibrium solubility. Temperature programming is proposed as a potential method to control the size distribution during the phase transition. The model suggests conditions to suppress homogeneous nucleation by seeding. We also explore how a temperature program for cooling crystallization based on different properties of the crystal forms can separate two crystal polymorphs.  相似文献   

10.
黄翠  王玉军  骆广生 《化工学报》2013,64(11):4246-4254
以硫酸锌和氢氧化钠为原料,在膜分散微结构反应器中通过快速均匀混合制备得到颗粒平均尺寸为10~20 nm的氧化锌,并利用混合尺度模型模拟了微反应器内纳米颗粒的成核、生长和团聚过程。模拟计算结果表明,在最初的0.6 ms内颗粒成核占主导地位,在1.6 ms以后以生长为主,同时由于颗粒数密度较大,颗粒运动碰撞造成团聚效应,使得颗粒尺寸具有一定的分布。混合尺度和反应物浓度对颗粒直径和分布有很大影响。模拟结果表明当混合尺度从50 μm减少到5 μm,纳米氧化锌颗粒从19 nm降低到12 nm。微反应器制备实验结果表明,随着膜孔径的减小,混合强度增加,纳米氧化锌颗粒平均直径从20 nm 降低至11 nm,当初始反应物浓度从0.05 mol·L-1提高到0.20 mol·L-1,氧化锌纳米颗粒尺寸由10 nm增大至16 nm。颗粒平均直径及分布的模拟值与实验值相符较好。  相似文献   

11.
A styrene miniemulsion was prepared using carboxylated polyurethane as the sole costabilizer and sodium dodecyl sulfate as the surfactant. The effects of the amount of carboxylated polyurethane, the amount of the initiator and surfactant, the presence of a water‐phase inhibitor (sodium nitrite), and the reaction temperature on the kinetics of the miniemulsion polymerization were investigated. The evolution of the particle size during the polymerization was measured. The results show that the polymerization rate was proportional to the 0.21 power of the surfactant concentration and the 0.30 power of azobisisobutyronitrile. The droplet nucleation and homogeneous nucleation were found to be coexistent in the polymerization. The hydrophility of the particle surface plays a key role in the nucleation of the particle and, therefore, has an important effect on the kinetics of the polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1941–1947, 2003  相似文献   

12.
An extensive model is given for the particle size distribution (PSD), particle number, particle size and amount of secondary nucleation in emulsion polymerisations. This incorporates what are thought to be all of the complex competing processes: aqueous phase kinetics for all radical species arising from both initiator and from exit (desorption), radical balance inside the particles, particle formation by both micellar and homogeneous nucleation mechanisms, and coagulation (the rate of which is obtained using the Healy–Hogg extension of DLVO theory). The predictions of the model are compared to extensive experimental results on rates, time evolution of the particle size distribution, and relative amounts of secondary nucleation, for styrene initiated by persulfate with sodium dodecyl sulfate and with sodium dihexyl sulfosuccinate as surfactants. For this system values of almost all of the many parameters needed for the model are available from independent measurements, and thus no significant parameter adjustment is plausible. Accord with experiment is imperfect but quite acceptable, supporting the validity of the various mechanisms in the model. Effects such as the experimental variation of particle number with ionic strength, as well as calculated coagulation rate coefficients as functions of particle size, suggest that coagulation of precursor (i.e., newly-formed) particles is a significant effect, even above the cmc. The modelling also suggests why secondary nucleation occurs readily in systems stabilised with polymeric surfactant.  相似文献   

13.
The hydrogen reduction kinetics of solid sodium sulfate mixed with sodium titanate are studied in a thermogravimetric system. The conversion-time curves of the hydrogen reduction are sigmoidal in shape and are well described by the nucleation and growth model up to about 60% conversion. The reduction rate of this mixture is much faster than that of pure sodium sulfate. In the deceleratory conversion period, the reduction is controlled by gas diffusion through a product layer. Activation energies of 302 and 179 kJ/mol are obtained, respectively, for the nucleation and growth, and diffusion limited period. The influence of hydrogen concentration, steam concentration, sodium sulfate fraction, and sodium sulfide addition is also studied. A reaction mechanism is proposed for the hydrogen reduction in the solid state.  相似文献   

14.
During reaction crystallization of europium oxalate in a semi-batch reactor, a monotonical increase in the mean particle size and corresponding reduction in the total particle population were observed due to particle agglomeration occurring simultaneously with particle nucleation and growth. However, since particle agglomeration was achieved via particle aggregation and molecular growth, the mean particle size and total particle population in the product suspension were significantly influenced by the crystallization conditions of the feed concentration, agitation speed, and feeding time. A higher feed concentration and feeding time resulted in a larger mean particle size and smaller total particle population due to the higher supersaturation and longer holding time in the reactor. Meanwhile, agitation was found to exhibit a rather complicated influence on particle agglomeration because particle collision and a turbulent fluid shear were both promoted at the same time. In the semi-batch reactor, the reduction in total particle population during crystallization clearly reflected particle agglomeration.  相似文献   

15.
Plenty of flue gas desulfurization (FGD) gypsum generated from coal-fired power plants for sulfur dioxide se-questration caused many environmental issues. Preparing calcium sulfate whisker (CSW) from FGD gypsum by hydrothermal synthesis is considered to be a promising approach to solve this troublesome problem and uti-lize calcium sulfate in a high-value-added way. The effects of particle size of FGD gypsum, slurry concentration, and additives on CSW were investigated in this work. The results indicated that fine particle size of FGD gypsum and moderately high slurry concentration were beneficial for crystal nucleation and growth. Three additives of magnesium chloride, citric acid, and sodium dodecyl benzene sulfonate (SDBS) were employed in this study. It was found that mean length and aspect ratio of CSW were both decreased by the usage of magnesium chloride, while a small quantity of citric acid or SDBS could improve the CSW morphology. When multi-additives of citric acid-SDBS were employed, the mean length and aspect ratio increased more than 20%. Moreover, surface morphology of CSW went better, and the particle size and crystal shape became more uniform.  相似文献   

16.
研究了五水柠檬酸钠的连续结晶过程。利用马尔文激光粒度分析仪对不同温度和停留时间下连续结晶过程产品的粒度分布进行分析。通过实验数据和粒度无关生长模型,分别计算了连续结晶过程中五水柠檬酸钠晶体生长与成核速率方程。研究表明,在33.3℃的连续结晶过程中,五水柠檬酸钠的成核速率较生长速率对溶液的过饱和度变化更敏感,增加溶液过饱和度更易形成较小粒度的晶体。  相似文献   

17.
利用热同步分析仪,在纯二氧化碳气氛、升温速率为10~30 K/min的条件下,对4种不同粒径的石灰石进行热分解特性研究,并采用改进的双外推法求解石灰石的热分解反应动力学参数。数据分析结果表明:石灰石粒径与其分解所需的活化能成正比例关系,粒径越小所需要的活化能越小,反之越大;升温速率越快,对应的分解反应温度越高,达到同一转化率所需要的时间越短,说明反应进程越快;纯二氧化碳气氛下,4种不同粒径的石灰石热分解均遵循随机成核和随后生长模型,不同粒径的石灰石对应不同的反应级数,反应级数变化范围为1/2~2;不同升温速率下石灰石热分解反应速率不同,粒径范围为38~250 μm的石灰石热分解反应速率受界面化学反应控制。  相似文献   

18.
A detailed model was developed for emulsion polymerization of styrene in batch reactor to predict the evolution of the product particle size distribution. The effect of binary surfactant systems (ionic/non-ionic surfactants) with different compositions was studied. The zero–one kinetics was employed for the nucleation rate, with the model comprising a set of rigorously developed population balance equations. The modeling incorporated particle formation by both nucleation and coagulation phenomena. The partial differential equations describing the particle population were discretized using finite volume elements. Binary surfactant systems, comprising sodium dodecyl sulfate (SDS) as anionic, and a commercial polyether polyol (Brij35®) as non-ionic surfactants, were examined with different mass ratios. Increasing non-ionic surfactant mass fraction in binary surfactant system showed the decrease of particle number due to intensifying the coagulation between particles. Broader particle size distributions with greater average particle size were obtained with non-ionic surfactant comparing those obtained with anionic one.  相似文献   

19.
Styrene miniemulsion polymerizations stabilized by sodium lauryl sulfate in combination with a reactive costabilizer, lauryl methacrylate (LMA) or stearyl methacrylate (SMA), were studied. A small amount of extremely hydrophobic dye was incorporated into monomer droplets (102 nm in diameter) to investigate particle nucleation and growth mechanisms. In addition to monomer droplet nucleation, particle nuclei generated in the aqueous phase (homogeneous nucleation) also play an important role in both LMA‐ and SMA‐containing polymerization systems. The way that these two nucleation mechanisms compete with each other is closely related to the water solubility of the costabilizer (LMA > SMA). The fraction of latex particles originating from homogeneous nucleation increases with decreasing hydrophobicity of the costabilizer. Zeta potential data of latex particles and the molecular weight and molecular weight distribution of emulsion polymers provide supporting evidence for the proposed competitive particle nucleation and growth mechanisms. © 2002 Society of Chemical Industry  相似文献   

20.
The purpose of this study was to investigate the effects of the different surface properties of powders on granular agglomeration in a high-shear mixer. Polyethylene glycol 6000 (PEG 6000) was used as the melting binder. Three different powders, with mean granule sizes of 75-150 μm were used as the raw materials: calcium carbonate, calcium sulfate, and sodium carbonate. The wetting properties of the raw materials were measured with a contact angle instrument. The results indicate that the speed at which the droplets sink into the powder bed and the contact angle of binder droplets on the powder surface play important roles in determining the progress of the agglomeration process. Several types of agglomeration were found: a slurry state, heterogeneous nucleation, snowballing, and induction growth behavior. Heterogeneous dispersion leads to induction behavior and subsequent growth, but a homogeneous dispersion leads to little or no nucleation and growth of agglomerate size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号