首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
将不同含量(0%,0.025%,0.05%,0.075%,0.1%,0.2%,质量分数)的石墨烯纳米片(GNSs)添加到Sn-58Bi低温钎料中,研究了GNSs对钎料熔化温度、润湿性能、剪切强度、显微组织和界面反应的影响。结果表明:添加GNSs可以改善Sn-58Bi钎料焊点的润湿性能和抗剪切强度,但对其熔化温度的影响较小。随着GNSs的添加,钎料得到了相对细化的显微组织,界面金属间化合物(IMC)的厚度明显降低,并逐渐趋于平整。另外,随着GNSs的加入,Sn-58Bi钎料的剪切断裂模式从脆性断裂转变为脆性和韧性混合的断裂模式,这与其抗剪切强度的变化是一致的。因此,添加微量的GNSs是增强Sn-58Bi/Cu焊点可靠性的有效途径。  相似文献   

2.
采用双辊快速凝固技术制备了Sn-58Bi钎料薄带,并制备Cu/Sn-58Bi/Cu线性焊点。使用电子探针(EPMA)及能谱分析(EDS)研究焊点在电流密度为1×10^4 A/cm^2(25℃)下界面金属间化合物(IMC)、元素扩散与钎料基体组织演变规律。结果表明,随着通电时间延长阳极界面处的IMC层的形状从扇贝状转变为锯齿状,阴极界面处的IMC层由扇贝形变为不规则,其厚度逐渐增加。阳极由于Bi的偏聚形成了富Bi层,Sn在阴极偏聚,基体共晶组织(Bi+β-Sn)粗化。基于线性拟合可知,阳极和阴极的界面IMC层的生长系数n分别为0.263和0.442,其生长机制可归结为体积扩散。  相似文献   

3.
何洪文  徐广臣  郭福 《焊接学报》2010,31(10):35-38,42
研究了Cu/Sn-58Bi/Cu对接接头焊点在电流密度为5×103~1.2×104A/cm2条件下钎料基体中阳极界面Bi层的形成机理.电迁移过程中,Bi元素为主要的扩散迁移元素,在电迁移力的作用下由阴极向阳极进行迁移.由于Bi原子的扩散迁移速度比Sn原子要快,促使Bi原子首先到达阳极界面.大量的Bi原子聚集在阳极界面时,形成了压应力,迫使Sn原子向阴极进行迁移,于是在阳极界面处形成了连续的Bi层.阴极处由于金属原子的离去,形成了拉应力,导致了空洞和裂纹在界面处的形成.Bi层的形态主要分为平坦的Bi层和带有凹槽的Bi层.Bi原子进行扩散迁移的通道有三种:Bi晶界、Sn晶界和Sn/Bi界面.随着电流密度和通电时间的增加,Bi层的厚度逐渐增加.电迁移力和焦耳热的产生成为Bi原子扩散迁移的主要驱动力.  相似文献   

4.
采用原位SEM观察、FIB微区分析和有限元(FE)模拟研究了非对称结构Cu/Sn-58Bi/Cu微焊点中电迁移引起的组织演变及其损伤。结果表明,非对称结构微焊点中富Bi相偏聚和微裂纹等电迁移现象远比对称焊点中严重;FIB-SEM微观分析结果显示非对称焊点中沿电流方向上各个微区内电阻差异是导致焊点截面上电流非均匀分布和严重电迁移问题的关键因素,理论分析和模拟结果均表明电流拥挤容易发生在焊点内微区电阻较小的位置。  相似文献   

5.
Cu/Sn-58Bi/Cu焊点在电迁移过程中晶须和小丘的生长   总被引:1,自引:0,他引:1  
何洪文  徐广臣  郭福 《金属学报》2009,45(6):744-748
利用SEM和EDS研究了Cu/Sn--58Bi/Cu焊点在电流密度为5×103 A/cm2, 80℃条件下晶须和小丘的生长. 通电540 h后, 在焊点阴极界面区出现了钎料损耗, 同时形成了晶须, 而在阳极Cu基板的钎料薄膜上形成了大量弯曲状晶须和块状小丘. EDS检测表明, 这些 晶须和小丘为Sn和Bi的混合物. 通电630 h后, 阳极上的晶须和小丘数量明显增多, 原来形成晶须的尺寸和形状没有变化, 阴极界面处 形成Cu6Sn5金属间化合物. 上述现象表明: 电迁移引发了金属原子的扩散迁移, 从而在阳极Cu基板上形成了一层钎料薄膜. 钎料薄膜中金属间化合物的形成导致压应力的产生, 促使晶须和小丘生长, 而阴极钎料损耗区域内晶须的形成与Joule热聚集有关.  相似文献   

6.
7.
研究了纳米Ag颗粒对Sn-58Bi钎料焊点微观组织、界面金属间化合物、铺展性能以及力学性能的影响。结果表明:添加Ag颗粒可以细化焊点组织,复合钎料的组织随Ag颗粒含量的增加呈先细化后粗化的趋势;Ag颗粒的添加使界面金属间化合物的厚度增大,复合钎料的界面金属间化合物的厚度随Ag颗粒含量的增加而增加;Ag颗粒的添加可以改善钎料的铺展性能,复合钎料的铺展性能随Ag颗粒含量的增加呈先增大后减小的趋势;适量Ag颗粒的添加可以改善焊点的拉伸性能,随着Ag颗粒含量的增加复合钎料焊点的拉伸性能呈先上升后下降的趋势;Ag的最佳添加量0.5%(质量分数)。  相似文献   

8.
采用浸焊方法制备Cu/Sn-58Bi/Ni线性焊点,研究5×103 A/cm2、170℃条件下液-固电迁移对Cu/Sn-58Bi/Ni线性焊点Cu、Ni交互作用以及界面反应的影响。无论电流方向如何,在液-固电迁移过程中焊点均表现为"极性效应",即阳极界面金属间化合物(IMC)持续生长变厚,且一直厚于阴极界面的IMC。电迁移显著加快了Cu、Ni原子的交互作用。当电子由Ni流向Cu时,在化学势梯度和电子风力的耦合作用下,Ni原子扩散至阳极Cu侧参与界面反应生成(Cu,Ni)6Sn5类型IMC,同时一定量的Cu原子能够逆电子风扩散到Ni侧,参与界面反应生成(Cu,Ni)6Sn5类型IMC;当电子由Cu流向Ni时,大量的Cu原子扩散至Ni侧,并参与界面反应生成(Cu,Ni)6Sn5类型IMC,然而,Ni原子在逆电子风条件下无法扩散至Cu侧,从而使阴极Cu侧界面始终为Cu6Sn5类型IMC。此外,无论电流方向如何,焊点内都没有出现Bi的聚集。  相似文献   

9.
郭沁涵  赵振江  沈春龙 《焊接学报》2017,38(10):103-106
对Cu/Sn-15Bi/Cu焊点在150℃下的电迁移组织演变进行了研究. 结果表明,焊点阳极侧出现了近共晶相的偏聚,近共晶相厚度随电迁移时间的延长而逐渐增加;受“电子风”力的影响,钎料中Cu6Sn5金属间化合物逐渐向阳极侧偏聚,此外,由于阴极侧Cu6Sn5界面金属间化合物的脱落,钎料中的Cu6Sn5金属间化合物体积分数逐渐增加;焊点阴极侧界面金属间化合物厚度随电迁移时间延长逐渐增加,阳极侧界面金属间化合物厚度随电迁移时间延长先增加,后降低,当电迁移时间超过5 h后,界面金属间化合物厚度迅速增加.  相似文献   

10.
选用直流稳压电源对Cu/Sn-58Bi-x CNTs/Cu(x=0,0.01)焊点的抗电迁移性能进行了测量,研究了不同通电时间下焊点的组织、界面IMC形貌及蠕变性能。结果表明:随着通电时间的增加,钎料焊点的显微组织均呈粗化的趋势,焊点界面IMC形貌均由扇贝状趋于平坦,厚度呈上升的趋势,钎料焊点的蠕变断裂寿命均降低。与同一通电时间的焊点阳极对比,焊点阴极附近的组织更为细小,界面IMC更薄;相较于同一通电时间的Sn-58Bi钎料焊点,Sn-58Bi-0.01CNTs复合钎料的焊点显微组织更为细小,界面IMC更薄,焊点的蠕变性能更优。  相似文献   

11.
石墨烯纳米片对Sn-58Bi钎料显微组织和性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
邱希亮  郝成丽  修子扬  何鹏 《焊接学报》2017,38(4):63-66,71
文中通过粉末冶金法在Sn-58Bi钎料中添加不同质量分数的石墨烯纳米片(GNSs),以分析GNSs含量对Sn-58Bi钎料显微组织和性能的影响.结果表明,添加GNSs,对Sn-58Bi钎料熔点无明显影响;随着GNSs添加量提高,Sn-58Bi钎料的密度和显微维氏硬度先升高后降低;通过对比添加质量分数为0.05%的GNSs前后Sn-58Bi钎料/铜基板钎焊接头抗剪强度发现,添加GNSs后,由于能够起到细晶强化和弥散强化两方面作用,从而使钎焊接头抗剪切断裂能力提高.  相似文献   

12.
利用SEM观察、聚焦离子束(FIB)微区分析和有限元模拟对比研究了直角型和线型Cu/Sn-58Bi/Cu微焊点在高电流密度下(1.5×10~4A/cm~2)的电迁移行为,从原子扩散距离和微区域电阻变化及阴阳极物相变化的角度研究了焊点结构变化对电迁移影响的机理.结果表明,2种焊点通电112和224 h后均发生了Bi向阳极迁移并聚集及Sn在阴极富集的现象;直角型焊点阳极由于Bi聚集后膨胀而产生压应力进而导致小丘状凸起和微裂纹出现,而阴极存在拉应力引发凹陷和微裂纹,且沿界面呈非均匀变化.微区组织分析表明,电迁移作用下焊点内部Bi原子的扩散速度大于Sn原子的扩散速度.观察分析和模拟结果还表明,具有结构不均匀性的直角型焊点中电子流易向电阻较小区域聚集而产生电流拥挤效应,这是引起直角型焊点电迁移现象严重的根本原因.  相似文献   

13.
研究了Sn-58Bi钎料和Sn-58Bi-0.01CNTs复合钎料焊点在不同温度、应力和电流密度下的抗剪切蠕变性能。结果表明:随着温度、应力和电流密度的逐渐增加,Sn-58Bi钎料和Sn-58Bi-0.01CNTs复合钎料焊点的抗蠕变性能均逐渐降低。添加碳纳米管(CNTs)后,复合钎料焊点的稳态应变速率均降低。添加CNTs可以提高焊点的抗蠕变性能。  相似文献   

14.
通过研究150℃时效条件下Sn-3.8Ag-0.7Cu-0.05Nd/Cu焊点剪切力变化和界面微观结构演变,探讨稀土元素Nd对焊点高温可靠性的影响及其影响机制.结果表明,不同时效时间后Sn-3.8Ag-0.7Cu-0.05Nd/Cu焊点剪切力明显高于Sn-3.8Ag-0.7Cu/Cu焊点,且时效过程中Sn-3.8Ag-...  相似文献   

15.
采用光学显微镜、电子显微镜和动态力学分析等方法研究Bi含量对直径为400μm、高度为200μm的无铅Cu/Sn-0.3Ag-0.7Cu(SAC0307)/Cu微尺度焊点的显微组织及蠕变性能的影响。结果表明:当焊点中Bi含量较低(1%(质量分数))时,其基体组织细小,Cu_6Sn_5为粗大块状,Ag_3Sn分布不均匀;当焊点中Bi含量较多(3%(质量分数))时,基体组织与Cu_6Sn_5进一步细化,Ag_3Sn在细化的同时分布更均匀,界面扇贝状IMC层更平直。另外,温度为80~125℃、应力为8~15 MPa条件下,拉伸蠕变试验得到SAC0307微焊点的蠕变激活能(Q)和蠕变应力指数(n)分别为82.9 k J/mol和4.35;当钎料中Bi含量由1.0%增加到3.0%时,焊点的Q值从89.2 k J/mol增加到94.6 k J/mol,n值由4.48增加到4.73,钎焊接头的抗蠕变能力明显提高,所有焊点的蠕变变形机制主要受位错攀移控制。  相似文献   

16.
研究了镍包覆碳纳米管(Ni-CNTs)对Sn-58Bi钎料焊点微观组织和可靠性的影响。结果表明:Ni-CNTs的添加提高了Sn-58Bi钎料润湿性能,复合钎料焊点界面IMC(intermetallic compound)呈现扇贝状,细化了Sn-58Bi钎料的微观组织,提高了复合钎料接头的拉伸和剪切性能。随着Ni-CNTs含量的增加,铺展面积呈现先上升后下降的趋势,IMC厚度呈现下降的趋势;复合钎料接头的抗拉强度和抗剪强度均呈现先上升后下降的趋势。当Ni-CNTs含量为0.03wt%时,复合钎料铺展面积最大,为58.3 mm2;复合钎料接头的抗拉强度和抗剪强度最大,分别为99.2、14.1 MPa。  相似文献   

17.
王小伟  王凤江 《焊接学报》2023,(12):70-74+81+141-142
研究了回流焊点尺寸的减小对Sn-58Bi焊点显微组织形貌的影响,分析了在不同老化时间下焊点尺寸的减小对焊点界面微观组织的演变和剪切性能的影响.结果表明,在相同的冷却条件下,焊点尺寸的减小造成焊点在凝固阶段有较大的过冷度,在焊点内形成大块的初生β-Sn相,使得不同尺寸焊点内锡相和铋相的晶粒尺寸分布产生差异. Cu原子扩散速率的差异,Sn-58Bi焊点尺寸的减小有利于回流后界面金属化合物(IMC)的生长,并且在老化条件下,300μm焊点界面IMC的生长速率为0.324μm/day1/2,大于400μm和760μm焊点界面IMC的生长速率,300μm焊点界面IMC需要更短的时间从扇贝状成长为平板状. 300μm焊点中有更强的机械约束效应,导致300μm焊点具有更高的抗剪切强度,回流后抗剪切强度达到了70.89 MPa,400μm和760μm焊点抗剪切强度分别为67.19 MPa和60.97 MPa.  相似文献   

18.
依据JEDEC标准采用板级跌落实验研究晶圆级芯片尺寸封装Sn-3.0Ag-0.5Cu焊点的跌落失效模式。发现存在六种失效模式,即发生在印刷电路板(PCB)侧的短FR-4裂纹和完全FR-4裂纹,以及发生在芯片侧的再布线层(RDL)与Cu凸点化层开裂、RDL断裂、体钎料裂纹及体钎料与界面金属间化合物(IMC)混合裂纹。对于最外侧的焊点,由于PCB变形量较大且FR-4介质层强度较低,易于形成完全FR-4裂纹,其可吸收较大的跌落冲击能量,从而避免了其它失效模式的发生。对于内侧的焊点,先形成的短FR-4裂纹对跌落冲击能量的吸收有限,导致在芯片侧发生失效。  相似文献   

19.
以Sn-9Zn/Cu焊点为参比物,研究了Sn-8Zn-3Bi/Cu焊点在85℃时效条件下界面金属间化合物(IMC)的生长行为。结果表明,相同钎焊工艺条件下,与Sn-9Zn/Cu相比,Sn-8Zn-3Bi/Cu界面反应更为充分。在85℃时效过程中,Sn-9Zn/Cu界面IMC结构稳定,Sn-8Zn-3Bi/Cu焊点界面IMC生长速率变化不大,界面IMC层增厚速率在界面反应初期较快而在后期则显著下降。Bi的添加对合金熔点的降低促进了界面初期反应过程的充分进行。随着界面反应时间的延长,Bi对Cu-Zn(IMC)层的生长表现出明显的抑制作用,界面IMC生长动力学时间指数显著减小。  相似文献   

20.
研究了时效时间对Sn-58Bi/Cu和Sn-58Bi-0.5Ce/Cu焊点组织和显微硬度的影响。结果表明:随着时效时间增加,Sn-58Bi/Cu和Sn-58Bi-0.5Ce/Cu焊点组织逐渐粗化,界面IMC厚度不断增加;同一时效时间下,Sn-58Bi-0.5Ce/Cu焊点的晶粒尺寸和界面IMC层厚度均低于Sn-58Bi/Cu焊点。焊点的显微硬度均随时效时间增加先增大后降低,且Sn-58Bi-0.5Ce/Cu焊点的显微硬度均高于Sn-58Bi/Cu焊点。Ce颗粒的添加可有效抑制时效过程中焊点组织的粗化及界面IMC层厚度的增加,从而获得较高的显微硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号