首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过熔融-热处理法制备了不同硅锂比(SiO_2与Li_2O摩尔比)的二硅酸锂微晶玻璃,利用XRD、DTA和SEM对微晶玻璃的微观结构形貌进行了表征,研究了硅锂比和热处理温度制度对二硅酸锂微晶玻璃的晶相组成、晶粒大小以及断裂强度的影响。结果表明,较低的硅锂比(SiO_2与Li_2O摩尔比为2.109)会促使六边形的偏硅酸锂主晶相形成;而较高的硅锂比(SiO_2与Li_2O摩尔比为2.469)则会促使形成二硅酸锂主晶相,微观形貌为棒状晶粒的互锁结构。由于二硅酸锂棒状晶体的形成,微晶玻璃在恰当的热处理制度下可以达到较高的断裂强度。  相似文献   

2.
用高温熔融法制备了掺杂Sm2O3的CaO-B2O3-SiO2(CBS)发光玻璃材料,采用示差扫描量热法(DSC)确定了合适的核化/晶化温度制度.在不同核化/晶化温度制度下制备得到了微晶发光玻璃,并对其结构及光谱学特性进行了研究.X射线衍射(XRD)分析表明:经微晶化的发光玻璃出现了晶体的尖锐衍射峰,随着温度的升高,晶体类型和晶粒尺寸均发生变化.光谱学测试表明:Sm掺杂微晶发光玻璃在404nm激发下出现Sm3+的特征发射峰,峰值波长分别位于566nm、603nm和650nm;发光玻璃的荧光发射峰强度和荧光寿命均表现出随热处理温度的升高先增大后减小的变化,在核化/晶化温度为750℃/800℃条件下制备的微晶玻璃的荧光发射强度和荧光寿命均达到最大值,随着核化/晶化温度的进一步升高,样品的荧光强度和荧光寿命均有所下降.  相似文献   

3.
采用高温熔融法制备Si O2-Na F-Na2O-Gd2O3-Eu2O3系基质玻璃,热处理后获得微晶玻璃.通过差热分析(DTA)、X射线衍射(XRD)、电子扫描电镜(SEM)和荧光光谱等对样品进行分析.XRD结果表明:基质玻璃经700、750℃热处理2~4 h获得含Gd9.33(Si O4)6O2的微晶玻璃.晶粒尺寸随热处理温度的升高和时间的延长而增大.荧光光谱研究结果表明:与基质玻璃相比,微晶玻璃的激发强度和发射强度明显增强,微晶玻璃中电荷迁移带发生偏移,5D0—7F1跃迁的发射峰出现劈裂,5D0—7F2与5D0—7F1跃迁强度比值减小,表明Eu3+进入Gd9.33(Si O4)6O2晶格中;微晶玻璃中5D0—7FJ特征发射峰和激发峰强度随热处理温度的升高和热处理时间的延长而增强.  相似文献   

4.
纳米晶镁铝尖晶石透明微晶玻璃的研究   总被引:2,自引:1,他引:1  
以TiO2、ZrO2为晶核剂,用两步法热处理制备MgO-Al2O3-SiO2(MAS)系统透明微晶玻璃。采用X射线衍射分析(XRD)、扫描电镜(SEM)、场发射环境扫描电镜(FE-ESEM)、紫外-可见光光度计对材料进行了表征。实验结果表明,热处理温度在1 000℃以下时,仅有唯一晶相镁铝尖晶石(MgAl2O4)存在;在1 050℃时,β-石英晶体析出,但尖晶石仍为主晶相。玻璃中晶体的析出使紫外吸收极限向长波方向移动,随着晶化温度的升高,晶粒尺寸增大,微晶玻璃光透过率下降。经830℃核化保温4 h、950℃晶化保温1.5 h得到的微晶玻璃样品平均晶粒尺寸仅为25.6 nm,紫外截止率达100%,可见光透过率为62%。  相似文献   

5.
使用晶化法制备以二硅酸锂为主晶相,P_2O_5为主要形核剂的锂锌硅微晶玻璃。引入稀土Er_2O_3掺杂Li_2OSiO_2-P_2O_5-ZnO系统基础玻璃。通过测试该系统微晶玻璃的差热曲线、X射线衍射图谱、高温粘度曲线和扫描电镜图像,研究引入Er_2O_3含量的变化对该系统微晶玻璃析晶性能、次晶相的种类和含量、高温粘度变化、析出晶粒的大小及分布情况和微晶玻璃抗弯强度的影响。结果表明:引入Er_2O_3提高该系统微晶玻璃的玻璃转化温度,提高锂锌硅微晶玻璃晶化热处理的温度,影响了次晶相偏硅酸锂晶相的析出,通过改变微晶玻璃次晶相的种类和含量,降低了体系的热膨胀系数,掺杂0.3%的Er_2O_3提高了二硅酸锂的析晶速率,并降低了该系统微晶玻璃的高温粘度,当Er_2O_3的掺杂量为0.3%时,该体系微晶玻璃获得最大的抗弯强度310 MPa。  相似文献   

6.
Bi2O3能够有效降低基础玻璃的熔化温度,在锂镁铝硅系统微晶玻璃中加入不同质量含量的Bi2O3后,采用DSC,XRD,FESEM以及高分辨透射电镜等测试手段进一步研究了Bi2O3对微晶玻璃结构及性能的影响。研究结果显示,微晶玻璃中析出的主要晶相为β-锂辉石和锂辉石固溶体,加入量为质量分数1.0%时,能够降低微晶玻璃晶化温度约25℃。Bi2O3质量含量为1.0%时微晶玻璃的热膨胀系数最小,但是微晶玻璃的抗折强度与Bi2O3的含量没有明显的线性关系,随着Bi2O3含量的增加,晶粒的尺寸呈现变小的趋势。  相似文献   

7.
采用高钛高炉渣和废玻璃为主要原料,CaCO3作为发泡剂,硼砂Na2B4O7·10H2O作为助熔剂,磷酸钠Na3PO4·12H2O作为稳泡剂,通过“一步法”烧结制备了微晶泡沫玻璃。研究了烧结温度对微晶泡沫玻璃的影响,通过SEM及XRD对高钛高炉渣制备微晶泡沫玻璃的显微组织结构和物相进行分析。研究表明:在850℃~950℃之间,高钛高炉渣内的钙钛矿随烧结温度的增加逐渐分解,与其他物质反应生成透辉石Ca(Mg,Al)(Si,Al)2O6、普通辉石Ca(Mg,Fe,Al)(Si,Al)2O6、Ca(Mg,Fe)(Si,Al)2O6和硅辉石CaSiO3等晶体。微晶泡沫玻璃的孔径随烧结温度的增加逐渐增大,最后形成大孔和连通孔,同时,孔壁上析出的晶体数量增加,且晶体的形状从颗粒状变成层片状。在烧结温度为900 ℃时,微晶泡沫玻璃综合性能达到最佳:密度为0.6312 g/cm3,气孔率为74.5 %,吸水率为8.3 %,抗压强度为9.09 MPa。  相似文献   

8.
采用氧化物法制备了Ni0.5Zn0.5Fe2 O4铁氧体;样品的相组成成分、微结构和介电性能分别采用X射线衍射仪(XRD)、扫描电镜(SEM)、阻抗分析仪进行表征,讨论了经不同温度预烧和烧结后的样品微结构和介电性能.结果表明:950℃和1 000℃预烧的样品有Fe2 O3第2相产生,随着烧结温度的升高,微晶尺寸和密度逐渐增大;介电常数呈现先减小后增大的趋势,在1 200℃时有最小值;1 300℃下烧结样品的介电损耗角正切有峰值出现,表现出了异常的介电行为.  相似文献   

9.
为了提高CuAlO_2陶瓷的电导率,满足其在热电器件使用中的要求,以Cu_2O、Al_2O_3为原料,铝硅酸盐玻璃为添加剂,采用两步固相烧结法制备了CuAlO_2(CAO)陶瓷,研究烧结温度对CAO陶瓷电导率的影响.实验发现:随着烧结温度的上升,CAO陶瓷的密度、晶粒尺寸和电导率逐渐增大.烧结温度为1 175℃时,CAO陶瓷的表观密度和相对密度达到最大值,分别为4. 408 g/cm3和95. 8%.当烧结温度达1 200℃时,CAO陶瓷晶粒生长发育完整,呈现多边形结构,且其电导率达到最大(2. 42 S/m),比1 050℃的样品高了近10倍.阻抗谱分析表明,烧结温度对CAO陶瓷电导率的改善主要来自于晶粒阻抗的贡献.  相似文献   

10.
以Al2O3和SiC为原料,利用热压烧结法制备了Al2O3-SiC复合陶瓷.采用三点弯曲法、单边切口梁法等手段和SEM方法分别测定和分析了该复合陶瓷的抗弯强度、断裂韧性、致密度和断口形貌.结果表明,Al2O3-SiC10wt%复合陶瓷的致密度随热压烧结温度的提高而逐渐提高,最高可达98.42%;抗弯强度随烧结温度的升高而呈上升趋势,在1 800℃时抗弯强度最大为623MPa;断裂韧性明显是随温度的升高加强,特别是在1 850℃烧结时达到最高值7.9MPa·m1/2.材料的断裂方式主要为沿晶断裂,随着烧结温度升高,穿晶断裂所占的比例增大.  相似文献   

11.
采用低温低压烧结WC-8Co硬质合金,并研究了烧结温度和烧结压力对硬质合金组织和性能的影响.研究结果表明:随着烧结温度的升高,WC-8Co硬质合金的孔隙减少,晶粒尺寸和密度增大;硬质合金的硬度与抗弯强度随着密度的增大而提高.当烧结温度高于1 280℃时,WC-8Co硬质合金的烧结方式为液相烧结;烧结压力有利于硬质合金的致密化.当烧结温度为1 300℃,烧结压力为5 MPa时,WC-8Co硬质合金的密度、硬度和抗弯强度分别为14.61 g/cm3、90.7 HRA和1 830 MPa.  相似文献   

12.
采用高温熔融法,将Eu3+掺杂的P2O5-Ba O-Na2O-K2O-Y2O3系统玻璃,在不同的温度下进行热处理,制备出Eu3+:YPO4的微晶玻璃.利用X射线衍射仪、扫描电子显微镜、荧光光谱仪等对微晶玻璃样品的晶相、微观形貌和光谱性能进行测试、研究.结果表明:基础玻璃在750℃热处理1 h可以得到纯相的Eu3+:YPO4的微晶玻璃,该微晶玻璃在225 nm波长的激发下,位于594 nm处Eu3+的5D0—7F1跃迁发射最强,并随着热处理温度的升高,微晶玻璃的发光强度逐渐增强.  相似文献   

13.
用两步合成法制备钇铝石榴石(YAG∶Ce)荧光粉复合磷锌硼发光微晶玻璃,利用红外光谱等表征手段,系统研究了氧化硼掺量、成型方式、荧光粉掺量和热处理制度对发光微晶玻璃结构的影响。结果表明,随着B2O3掺量增加,发光微晶玻璃试样中[BO3]和B2O2-7离子基团含量增加,[BO4]含量减少;成型方式对发光微晶玻璃结构有一定影响;随着荧光粉掺量增加,发光微晶玻璃中YAG晶相含量增加,Zn2P2O7、BPO4晶相含量变化较少,缺陷增加;随着烧结温度升高,YAG晶相含量不变,BPO4晶相含量减少,至600℃时Zn2P2O7发生晶型转变,由α-Zn2P2O7转变为β-Zn2P2O7,有利于提高发光微晶玻璃的烧结质量。  相似文献   

14.
采用均相沉淀法制备了ZnFe2 O4前驱体,探索了烧结温度对ZnFe2 O4结构和电化学性能的影响。用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了材料的微观结构和形貌;采用循环伏安(CV)、电化学交流阻抗谱(EIS)和充放电测试了ZnFe2 O4作为锂离子电池负极材料的储锂性能。结果表明:随着烧结温度的升高,样品粒径增大;当烧结温度达到900℃时可以得到纯相尖晶石型ZnFe2 O4,其中在900℃下烧结的ZnFe2 O4样品具有最高的嵌锂活性、最好的电化学反应可逆性、最低的电化学反应阻抗和优良的倍率性能。  相似文献   

15.
利用高炉渣并添加辅料制备了基础玻璃,对基础玻璃进行热处理制备出以钙铝黄长石、透辉石为主晶相的微晶玻璃。运用DSC、XRD、SEM等测试方法,综合分析CaO/SiO_2比对高炉渣微晶玻璃结构和性能的影响。结果表明:随着CaO/SiO_2比从0.358增加至0.468,微晶玻璃析晶温度逐渐降低,微晶玻璃的主晶相均为钙铝黄长石、次晶相均为普通辉石,微晶玻璃的体积密度、显微硬度及抗折强度呈现上升趋势。随着CaO/SiO_2比继续增加至0.599,微晶玻璃析晶温度开始上升,主晶相转变为透辉石。微晶玻璃的体积密度、显微硬度呈现上升趋势,而抗折强度呈现下降趋势。当CaO/SiO_2比为0.468时,样品的机械性能最好,体积密度为2.789g/cm~3,抗折强度为46.2MPa。  相似文献   

16.
利用无压烧结技术,制备BN/Si_3N_4透波材料;研究了1 400℃、1 500℃、1 600℃和1 680℃四个烧结温度对BN/Si_3N_4透波材料致密化、弯曲强度、介电性能和显微结构的影响。结果表明:温度升高有利于β-Si_3N_4晶相的生成,烧结温度为1 600℃时,BN/Si_3N_4透波材料中针状β-Si_3N_4相和h-BN相并存;随着烧结温度的升高,气孔率单调降低,相对密度单调升高;弯曲强度、断裂韧性、介电常数和介电损耗逐渐增大;当烧结温度为1 600℃时,相对密度为74.2%,弯曲强度和断裂韧性分别为281.3 MPa和2.74 MPa/m~2,介电常数和介电损耗分别为5.01和0.010 2,可以作为航空航天飞行器的候选材料。  相似文献   

17.
采用均相沉淀法制备了Zn Fe2O4前驱体,探索了烧结温度对Zn Fe2O4结构和电化学性能的影响。用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了材料的微观结构和形貌;采用循环伏安(CV)、电化学交流阻抗谱(EIS)和充放电测试了Zn Fe2O4作为锂离子电池负极材料的储锂性能。结果表明:随着烧结温度的升高,样品粒径增大;当烧结温度达到900℃时可以得到纯相尖晶石型Zn Fe2O4,其中在900℃下烧结的Zn Fe2O4样品具有最高的嵌锂活性、最好的电化学反应可逆性、最低的电化学反应阻抗和优良的倍率性能。  相似文献   

18.
将Na2O-CaO-SiO2玻璃作为介质,运用引入高活性金属Al来制备板状α-Al2O3粉体.运用X射线衍射对物相进行鉴定,使用场发射扫描电子显微镜观测其板状形貌.结果表明,800℃、1 000℃、1 200℃温度下保温2h所制得样品的晶粒尺寸在20~60nm之间,且随着加热温度升高,晶体粒径呈增大趋势;1 000℃下改变保温时间所制得样品的晶粒尺寸在45~100nm之间,少数达到了100nm以上,随着保温时间的延长,晶体粒径尺寸先增大,后减小,再增大.  相似文献   

19.
以MgO-Al2O3-SiO2系基础玻璃和AlN为原料制备AlN/MAS微晶玻璃复合材料,可提高MAS微晶玻璃的导热性能。通过调整AlN/MAS微晶玻璃复合材料的组成,在1 000℃的烧结温度下制备AlN/MAS微晶玻璃复合材料。利用XRD、SEM、激光热常数测试仪等测试手段对不同组成的AlN/MAS微晶玻璃复合材料的结构和热导率进行了测试分析与研究。结果表明:AlN/MAS微晶玻璃复合材料在烧结过程中MAS微晶玻璃析出的主晶相为α-堇青石。该复合材料的热导率随着AlN含量的增加呈现出先增大后减小的特点。当AlN含量为20%时,复合材料的热导率最高;当AlN含量超过20%时,复合材料的热导率降低。  相似文献   

20.
以金矿尾砂、方解石为主要原料,添加其它所需原料为硼砂、ZnO、Cr2O3、Sb2O3等,采用熔融法制备CaO-Al2O3-SiO2系微晶玻璃.利用硅碳棒炉在1 300℃~1 350℃下保温4h熔制玻璃,熔好的玻璃液浇注在事先预热的不锈钢模具上,成形后放入马弗炉在600℃保温1h退火处理,对玻璃试样热处理得到微晶玻璃样品.采用TG-DSC差热分析仪测定基础玻璃的DSC曲线,确定金矿尾砂微晶玻璃较佳的热处理工艺为:800℃保温2h进行核化处理,890℃保温3h进行晶化处理.通过XRD、SEM等分析手段对试样的物相及微观结构进行了分析,测定制得微晶玻璃的抗折强度、热膨胀系数、体积密度等性能.结果表明:制得金矿尾砂微晶玻璃的主晶相为:辉石和透辉石固溶体,样品的热膨胀系数为69.5×10-7/℃,抗折强度为119.2MPa,体积密度为2.81g/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号