首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical manifold channel.Three different tube lengths varying from 0.59 m to 1.47 m have been modelled with five different inlet mass flow rates varying from 0.05 kg/min to 10 kg/min with a constant inlet temperature of 333 K. Under these operating conditions the results showed that:
• the collector with the shortest tube length achieved the highest efficiency,
• the optimal inlet flow rate was around 0.4–1 kg/min,
• the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate,
Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most operating conditions.  相似文献   

2.
A solar thermal collector was constructed based on an internal 1.15X cusp concentrator, thermal insulation involving a vacuum and selective absorber, and thermal transfer to a manifold via heat-pipe action. Performance of the collector was compared with that of an evacuated, selectively coated, flat-plate absorber equipped with flow-through heat transfer. It was shown that with single collector tubes, mirror losses lowered the optical efficiency of the cusp, heat-pipe collector below that of the flat plate, while the smaller absorber area of the heat pipe reduced thermal losses at absorber temperatures above ambient. Thus, a crossover in efficiency occurred such that the flat plate was more efficient at low while the cusp-heat pipe was more efficient at high . Testing of modules showed that manifold losses and gains could dominate these collector effects when the collector area approximately equaled the manifold area.  相似文献   

3.
The efficiencies ηo of arrays of evacuated tubular collectors with diffuse reflectors have been determined experimentally using a calorimetric technique and theoretically using a Monte-Carlo ray tracing technique. Results have been obtained on collector arrays with various collector tube separations and collector-reflector distance, using two types of reflector, and efficiencies are compared for collector tubes with and without antireflection layers on the glass envelopes. The variation of collector efficiency with angle of incidence for sunlight has also been studied for two collector tube separations. The reflecting properties of the reflectors, glass envelope and selective absorber have been modelled in some detail for the ray tracing calculations. Experimental and theoretical efficiencies agree within the experimental and theoretical uncertainties, and all the trends observed experimentally are predicted by ray tracing. The efficiency of the collectors is not strongly dependent on the reflectance of the diffuse reflector, but depends strongly on the collector tube separation. Antireflection layers which increase the transmittance through the glass envelope by 5% result in an increase of 0.02 (about 3 per cent) in collector efficiency.  相似文献   

4.
G. T. Roberts 《Solar Energy》1979,22(2):137-140
An experimental and theoretical investigation is described into the heat loss from a flat plate placed inside a partially evacuated glass tube. The conditions required to prevent convection losses are discussed and the effect of introducing a low thermal conductivity gas evaluated.  相似文献   

5.
The optical efficiencies ηo of arrays of evacuated tubular collectors incorporating plane, triangular and semicircular shaped reflectors coated with flat-white and gloss white paint have been studied experimentally using a calorimetric technique and theoretically using a ray tracing computer program. The results showed that the plane reflector is the optimum design. Detailed studies have been made of the dependence of optical efficiency and incident angle modifier as a function of collector tube separation for collectors incorporating the plane reflector. Two collector panels complete with heat extraction manifold and incorporating the plane reflector, but with different tube spacings were subject to detailed outdoor testing. The results indicated that it is cost-effective to space the collector tubes two or more absorber tube diameters apart.  相似文献   

6.
中高温直通式真空太阳集热管(简称直通式真空管)是由北京桑达太阳能技术有限公司最新研制的一种新型太阳能集热元件.它完全采用桑达公司自有的知识产权和技术,材料和零部件完全来自国内.该管子在太阳能聚光集热系统上使用时,管内导热工质可以达到350℃,管子可以承受3MPa的压力.该管型的研制目前处于国内领先水平,产品性能接近国外同类产品,采用直通式真空管的太阳能集热器可以用于太阳能空调、太阳能工业加热、太阳能热发电等中高温系统,大大拓宽了太阳能热利用的应用领域.  相似文献   

7.
Tubular receivers with an evacuated space between the absorber and concentric glass cover to suppress convection heat loss are employed as absorbers of linear concentrators in the intermediate temperature range. A knowledge of their heat loss factor is important for a study of the thermal performance of such solar concentrating systems. The heat loss factor of a collector can be calculated by solving the governing heat transfer equations or estimated from an empirical equation, if available. The governing equations must be solved simultaneously by iterations, but this is tedious and cumbersome. Although several correlations exist for determining the heat loss factor for flat-plate collectors and non-evacuated tubular absorbers of linear solar collectors, there is no available correlation for predicting the heat loss factor of evacuated receivers.

A correlation to calculate the heat loss factor (UL) of evacuated tubular receivers as a function of variables involved (absorber temperature, emittance, diameter and wind loss coefficient) has been obtained. The correlation developed by a least square regression analysis predicts the heat loss factor to within ±1.5% of the value obtained by exact solution of the simultaneous equations in the following range of variables: wind loss coefficient, 10–60 W/m2°C; emittance, 0.1–0.95; and absorber temperature, 50–200°C.  相似文献   


8.
This study focuses on the performance of a particular type of manifold (single-ended metal riser system) used to extract heat from Dewar-type evacuated tubular collectors. This heat extraction concept is similar to liquid-in-glass systems which have shown to perform very well. However, the additional thermal resistance between the selective surface and the metal tube carrying the collector fluid results in a performance reduction. The heat transfer processes within this system are analysed experimentally and analytically. Excellent agreement is obtained between measurements and theoretical models based on conduction and radiation heat transfer within the collector. Important parameters affecting overall collector performance are discussed.  相似文献   

9.
An investigation is reported of heat transfer between the glass absorber tubes of all-glass evacuated collectors and fluid-in-metal manifolds designed for heat extraction from the glass asborber tubes. The heat transfer is studied using a novel solar simulator which heats a panel of glass tubes electrically to simulate solar input to a collector panel. Measurement of the temperatures at various points on the glass tubes and on the manifolds gives a measure of the efficiency of heat transfer for each manifold under various operating conditions and allows calculation of the efficiencies η0 of collectors incorporating the manifolds. The effect of fluid temperature, collector inclination and fluid flow rate has been investigated for four manifold designs of increasing simplicity. Experimental results for the manifolds are compared with calculations of heat transfer. Potential lifetime problems for the manifolds are also discussed. The simplest manifold design is shown to have good prospects for high-temperature (>100°C) heat extraction.  相似文献   

10.
Measurements are reported on three novel manifolds of the water-in-glass type for evacuated all-glasssingle-ended tubular collectors. The manifolds provide for series connection of tubes, but because there is virtually no partitioning of the inner volume of the collector tubes, the manifolds are extremely simple and exhibit low impedance to fluid flow. The efficiency of heat extraction from the tubes has been determined by measuring temperatures at various points on the surface of glass tubes in a panel of area 1.2 m2 while heating the tubes electrically to simulate solar energy input. Measurements have been made for a range of tube inclinations (0–80°), water flow rates (0.5–5 lmin−1, water inlet temperatures (13–70°C), and effective solar fluxes (100–1000 W/m2) for two absorber tube diameters. The results show that for a wide range of operating conditions buoyancy effects alone result in efficient heat transfer to the tops of the tubes. The manifold designs described offer a possible low cost solution to the problem of manifolding evacuated collectors for sub-100°C heat extraction for domestic and industrial applications.  相似文献   

11.
The all-glass evacuated solar collection tubes, incorporating the dc sputtered double layer metal-aluminium nitride cermet selective surface, have been mass-produced by TurboSun in large quantities under license to the University of Sydney since 1995. A solar absorptance of 0.94–0.95 and emittance of 0.04–0.05 at room temperature has been achieved for the SS-AIN cermet solar coatings. These solar tubes are stable at 330–400°C. These M-AIN cermet tubes have widespread application for solar hot water and steam heaters, as well as the demonstration test units for solar thermal electricity. In China, the production of solar water heaters using all-glass evacuated solar heat collection tubes has rapidly increased since 1995. The experimental results show that the solar selective coatings incorporating dc sputtered tungsten and dc reactively sputtered aluminium nitride components in a cermet should be stable at 500°C in vacuum. It would be possible to produce solar collector tubes for solar thermal electricity application with superior solar performance at a much lower cost.  相似文献   

12.
This study involves the optical analysis of a slightly concentrating, symmetric cusp reflector inside a tubular glass envelope with a cylindrical heat pipe as the solar absorber. The basic design features of this non-tracking, evacuated, modular collector and the principles of heat removal are shown in Figs. 1 and 2. Differential equations of the cusp reflector optics, given the geometrical restrictions in Figs. 1 and 2, are derived, and solutions for the largest possible aperture inside a given diameter envelope and acceptance angle are presented.As an extension of the same study, the optical efficiency of a single collector tube has been simulated by means of a Monte Carlo Ray-Tracing Program. For a concentration ratio of 1.15, the flux distribution around the heat pipe is computed as a function of incidence angle. In addition, the impact of mirror defects and absorber misalignment on the optical performance are analyzed.  相似文献   

13.
U型管式全玻璃真空管集热器热效率及性能研究   总被引:1,自引:0,他引:1  
田琦 《能源工程》2006,(6):36-40
在能量平衡分析的基础上,建立了U型管式全玻璃真空管太阳能集热器热效率方程,推导了集热器热损系数、效率因子等性能参数的计算公式,理论计算热效率与实验数据吻合良好。计算分析表明,真空管热损系数与吸热管和环境温差并非线性关系,将其关联式按环境温度分段整理将使计算结果更接近实际;涂层发射比对集热器的热效率影响较大,降低涂层发射比是提高集热器效率的有效途径;采取适当的措施降低吸热管与肋片间的接触热阻后,采用U型管连接方式不会时热利用系统集热器效率造成太大影响。  相似文献   

14.
对一种新型简化CPC(非追踪式复合抛物线聚光板)式全真空玻璃集热管太阳能高温空气集热系统的传热过程进行了理论分析和数值模拟计算,通过实验数据对该传热模型进行了验证分析。该系统由多个集热单元组成,每个集热单元包括一个简化CPC集热板,一根全真空玻璃集热管,在玻璃集热管内安装一个U形铜管。流动空气在各级U形铜管内被逐级加热。计算研究表明:系统空气最大出口温度可达到200℃,系统平均集热效率达到0.3以上,整个系统表现了良好的高温集热特性。同时,计算也表明当系统工质流量增加时,只要系统增加更多的集热管以增加系统总功率即可满足工质温度达到200℃的设计要求。研究提出的新型简化CPC式全真空玻璃集热管太阳能高温空气集热系统是一种有工业实用前途的太阳能集热器;研究提出的传热模型模拟效果也可以满足一般性工程计算需求。  相似文献   

15.
Experimental and theoretical investigations to optimise the geometrical design parameters of a tubular collector under atmospheric and evacuated (~ 10?3 torr) conditions are reported. The results indicate that a maximum stagnation temperature, which corresponds to the minimum heat loss, is obtained for a gap width of ~ 12 mm. An absorber tube of 35 mm diameter concentric with a cover glass tube of 59 mm diameter was observed to be the best combination. An improvement in the collector performance was observed by increasing the illuminated area of the absorber tube and by evacuating the annular gap in the collector.  相似文献   

16.
A generalized theory for the computation of transmittance of a flat plate collector with double cylindrical cover is given. Effective transmittance for the collector at different azimuths and different orientations has been computed. This study gives an idea about collector performance at different orientations on a whole day basis.  相似文献   

17.
18.
In this technical note, a simple transient analysis of a tubular solar collector has been presented, incorporating the effect of tube length on its performance. It is observed that the effect of tube length on the outlet water temperature is significant.  相似文献   

19.
A performance of an evacuated tubular collector (G.E. design) fixed at the focus of a compound parabolic concentrator is investigated. In the G.E. design, heat is transmitted to the circulating fluid inside a U-tube. The U-tube is in contact with the receiver only on a line along the length of the receiver. This results in a non-uniform temperature distribution on the receiver in the θ-direction. The effect of the non-uniform temperature distribution on the performance parameters of the collector, viz. overall heat loss coefficient, plate efficiency factor and heat removal factor, has been studied. The results are presented in the form of a graph.  相似文献   

20.
通过实验研究了一种利用简化复合抛物面聚光器(compound parabolic concentrato,CPC),全玻璃真空集热管和同心套管组成的太阳能中高温空气集热设备,可以满足工业过程对150℃至200℃的中高温度空气需求。该太阳能空气集热系统由8级集热单元串联而成。各单元都包括一个简化式CPC、一个双层玻璃真空管和一根铜套管。套管被安装在玻璃管内,空气在套管内逐级加热。对各种天气条件和流动参数对集热系统出口空气温度、系统功率和集热效率的影响进行了分析和试验研究。结果表明,整个系统具有良好的中高温集热性能。即使出口空气温度达到210℃,系统平均集热效率仍然达到20%;秋天晴天系统出口空气温度可达210℃,秋季阴雨天也可达168℃。试验结果确认这种简化CPC式全真空玻璃集热管和套管的组合装置是一种有工业实用前途的太阳能高温空气集热器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号