首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Oral-facial-digital syndrome type VI (OFD VI) is characterized by the association of malformations of the face, oral cavity and extremities, distinguished from the 12 other OFD syndromes by cerebellar and metacarpal abnormalities. Cerebellar malformations in OFD VI have been described as a molar tooth sign (MTS), thus, including OFD VI among the “Joubert syndrome related disorders” (JSRD). OFD VI diagnostic criteria have recently been suggested: MTS and one or more of the following: 1) tongue hamartoma(s) and/or additional frenula and/or upper lip notch; 2) mesoaxial polydactyly of hands or feet; 3) hypothalamic hamartoma. In order to further delineate this rare entity, we present the neurological and radiological data of 6 additional OFD VI patients. All patients presented oral malformations, facial dysmorphism and distal abnormalities including frequent polydactyly (66%), as well as neurological symptoms with moderate to severe mental retardation. Contrary to historically reported patients, mesoaxial polydactyly did not appear to be a predominant clinical feature in OFD VI. Sequencing analyzes of the 14 genes implicated in JSRD up to 2011 revealed only an OFD1 frameshift mutation in one female OFD VI patient, strengthening the link between these two oral-facial-digital syndromes and JSRD.  相似文献   

2.
Oral-facial digital (OFD) syndrome is characterized by abnormalities of the face (hypertelorism and low set-ears), oral cavity (multiple frenula, lingual hamartoma, or lobulated tongue) and extremities (postaxial polydactyly). At least 19 genes have been implicated in the development of OFD syndrome. Herein, we report the case a 13-year-old patient with atrioventricular septal defect, moderate intellectual disability, epilepsy, and features of OFD, including multiple oral frenula, and postaxial polydactyly of the hands and feet. The patient had a de novo heterozygous variant in PRKACB: chr1(GRCh37):g.84700915T > C, c.1124T > C (NM_182948.4), p.(Phe375Ser). To date, four patients with pathogenic monoallelic variants in PRKACB have been reported, and the condition associated with these variants is referred to as Cardioacrofacial dysplasia-2 (CAFD2, MIM619143). Previously reported features of this condition include congenital heart disease (e.g., atrioventricular septal defect) and postaxial polydactyly, and two of the patients had multiple oral frenula. We suggest that a significant phenotypic overlap exists between CAFD2 and OFD syndrome, in that these patients especially share the features of postaxial polydactyly and multiple oral frenula. The phenotypic similarity between patients with CAFD2 and classic OFD syndrome with an OFD1 variant might be explained by the recent in vitro experimental finding that a protein kinase A subunit encoded by PRKACB directly phosphorylates the OFD1 protein. From the standpoint of genetic counseling, OFD syndrome type1, the prototypic form of OFD, exhibits an X-linked dominant inheritance pattern, whereas other forms of OFD syndrome exhibit an autosomal recessive inheritance pattern. Recognition of CAFD2 as a differential diagnosis or forme fruste of OFD syndrome suggests that an autosomal dominant pattern of inheritance should also be considered during genetic counseling.  相似文献   

3.
Oral‐facial‐digital (OFD) syndromes are a subgroup of ciliopathies distinguished by the co‐occurrence of hamartomas and/or multiple frenula of the oral region and digital anomalies. Several clinical forms of OFD syndromes are distinguished by their associated anomalies and/or inheritance patterns, and at least 20 genetic types of OFD syndromes have been delineated. We describe here a child with preaxial and postaxial polydactyly, lingual hamartoma, a congenital heart defect, delayed development and cerebellar peduncles displaying the molar tooth sign. Whole‐exome sequencing and SNP array identified compound heterozygous variants in the INTU gene, which encodes a protein involved in the positioning of the ciliary basal body. INTU is a subunit of the CPLANE multiprotein complex essential for the assembly of IFT‐A particles and intraflagellar transport. This report of a second patient with INTU‐related OFD syndrome and the further delineation of its neuroimaging and skeletal phenotype now allow INTU‐related OFD syndromes to be classified within the OFD syndrome type VI group. Patients display a phenotype similar to that of mice with a hypomorphic mutation of Intu, but with the addition of a heart defect.  相似文献   

4.
Pathogenic variants in the OFD1 gene have been classically associated with the Orofaciodigital syndrome type 1 in females, a condition previously considered to be X-linked dominant with male embryonic lethality. However, an increasing number of males with pathogenic OFD1 variants who survived beyond the neonatal period have now been reported in the literature. Although each new report has added to the ever-broadening spectrum of clinical findings seen in males, many questions about genotype-phenotype correlations and disease mechanism remain. Herein, we describe a 9-year-old male child with a novel hemizygous pathogenic OFD1 variant identified by exome sequencing and a unique combination of findings, not previously reported, including presence of both a hypothalamic hamartoma and the molar tooth sign. His clinical features overlap multiple ciliopathy phenotypes, blurring the boundaries of distinct ciliopathy gene-disease relationships. This case provides further evidence for the consideration of a broad OFD1-relateddisorder spectrum in affected males rather than multiple distinct phenotypes. Additionally, a review of previously published cases of the disorder in males support the inclusion of the OFD1 gene in the differential diagnosis and work up for all individuals who present with primary ciliopathy-type features, regardless of their gender. We also highlight current information about OFD1 variant types and pathogenesis and explore how these could mechanistically drive some of the observed phenotypic differences.  相似文献   

5.
6.

Background

Somatic mutations in SETBP1 gene have recently been detected in hematologic malignancies. The present study aimed to explore the frequency and clinical correlations of SETBP1 mutations in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS).

Methods

In this study, we used high-resolution melting analysis (HRMA) to detect the SETBP1 mutations in a cohort of 363 patients with AML or MDS.

Results

A total of 1.2% (3/249) of AML and 1.8% (2/114) of MDS patients were found with heterozygous SETBP1 mutations. In AML, patients with SETBP1 mutations showed higher hemoglobin (P?=?0.004) and were more frequently recurrent in AML-M4 subtype (P?=?0.034). All five SETBP1 mutated patients had normal karyotypes. The patients with SETBP1 mutations had significantly higher incidences of concurrent SRSF2 mutations (P?=?0.002). HRMA could detect SETBP1 mutations with 5% sensitivity, obviously higher than 25% of Sanger sequencing.

Conclusions

We established a rapid, inexpensive, high-throughput and sensitive method to screen SETBP1 mutations. SETBP1 mutations were a rare molecular event in AML and MDS patients.  相似文献   

7.

Background

Joubert syndrome (JS) is an autosomal recessive disorder characterised by hypotonia, ataxia, mental retardation, altered respiratory pattern, abnormal eye movements, and a brain malformation known as the molar tooth sign (MTS) on cranial MRI. Four genetic loci have been mapped, with two genes identified (AHI1 and NPHP1).

Methods

We screened a cohort of 117 JS subjects for AHI1 mutations by a combination of haplotype analysis and sequencing of the gene, and for the homozygous NPHP1 deletion by sequencing and marker analysis.

Results

We identified a total of 15 novel AHI1 mutations in 13 families, including nonsense, missense, splice site, and insertion mutations, with some clustering in the WD40 domains. Eight families were consanguineous, but no single founder mutation was apparent. In addition to the MTS, retinal dystrophy was present in 11 of 12 informative families; however, no subjects exhibited variable features of JS such as polydactyly, encephalocele, colobomas, or liver fibrosis. In contrast to previous reports, we identified two families with affected siblings who developed renal disease consistent with nephronophthisis (NPH) in their 20s. In addition, two individuals with classic NPH were found to have homozygous NPHP1 deletions.

Conclusions

Overall, 11% of subjects had AHI1 mutations, while ∼2% had the NPHP1 deletion, representing a total of less than 15% in a large JS cohort. Some preliminary genotype‐phenotype correlations are possible, notably the association of renal impairment, specifically NPH, in those with NPHP1 deletions. Subjects with AHI1 mutations may be at risk of developing both retinal dystrophy and progressive kidney disease.  相似文献   

8.
Joubert syndrome (JS) is an autosomal or X-linked recessive syndrome principally characterized by hypotonia, ataxia, cognitive impairment, and a specific finding on brain imaging called a "molar tooth sign" (MTS), which can be isolated or in conjunction with variable organ involvement. The genetic basis of JS is heterogeneous, with over 35 ciliary genes being implicated in its pathogenesis. However, some of these genes (such as PDE6D) have been associated to JS only in single families, seeking confirmation.Here we report a boy, born to first cousin parents, presenting with developmental delay, hypotonia, microcephaly, post axial polydactyly, oculomotor apraxia, and MTS. Whole exome sequencing revealed the presence of a novel homozygous truncating variant in the PDE6D gene: NM_002601.3:c.367_368insG [p.(Leu123Cysfs*13)]. The variant was confirmed by Sanger sequencing and found at the heterozygous state in both parents. A review of the literature pertaining to the role of PDE6D in JS is discussed.  相似文献   

9.
OFD1, now recognized as a ciliopathy, is characterized by malformations of the face, oral cavity and digits, and is transmitted as an X‐linked condition with lethality in males. Mutations in OFD1 also cause X‐linked Joubert syndrome (JBTS10) and Simpson–Golabi–Behmel syndrome type 2 (SGBS2). We have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis of clinical findings in patients with mutations revealed that oral features are the most reliable diagnostic criteria. A first, detailed evaluation of brain MRIs from seven patients with cognitive defects illustrated extensive variability with the complete brain phenotype consisting of complete agenesis of the corpus callosum, large single or multiple interhemispheric cysts, striking cortical infolding of gyri, ventriculomegaly, mild molar tooth malformation and moderate to severe cerebellar vermis hypoplasia. Although the OFD1 gene apparently escapes X‐inactivation, skewed inactivation was observed in seven of 14 patients. The direction of skewing did not correlate with disease severity, reinforcing the hypothesis that additional factors contribute to the extensive intrafamilial variability.  相似文献   

10.
Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the ‘molar tooth sign’. JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole‐exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, 9 of 12 CEP290 disease alleles were c.6012‐12T>A (75.0%), an allele that has not been reported in non‐Japanese populations. Therefore c.6012‐12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM138/BBS1, respectively). BBS1 is the causative gene in Bardet–Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.  相似文献   

11.
Mapping of de novo balanced chromosomal translocations (BCTs) in patients with sporadic poorly characterized disease(s) is an unbiased method of finding candidate gene(s) responsible for the observed symptoms. We present a paediatric patient suffering from epilepsy, developmental delay (DD) and atrial septal defect IIº (ASD) requiring surgery. Karyotyping indicated an apparently balanced de novo reciprocal translocation 46,XX,t(3;4)(p25.3;q31.1), whereas aCGH did not reveal any copy number changes. Using shallow mate-pair whole genome sequencing and direct Sanger sequencing of breakpoint regions we found that translocation disrupted SLC6A1 and NAA15 genes. Our results confirm two previous reports indicating that loss of function of a single allele of SLC6A1 causes epilepsy. In addition, we extend existing evidence that disruption of NAA15 is associated with DD and with congenital heart defects.  相似文献   

12.
The aim of this study was to investigate the methylation of the SFRP2, P16, DAPK1, HIC1, and MGMT genes, as well as the mutation of amino acid codons 12 and 13 of the KRAS gene in normal and tumor tissue DNA of patients diagnosed with sporadic colorectal cancer (SCRC). The methylation of gene regions and the KRAS mutations of normal (N) and tumor tissue (T) DNA obtained from 17 patients diagnosed with SCRC and 20 healthy controls were investigated using the polymerase chain reaction and reverse-hybridization methods. There was an Asp mutation in four patients, an Asp and Ser mutations in one patient in codon 12 of the KRAS gene, and an Asp mutation in codon 13 in eight patients. Overall promoter methylation (OPM) in the SFRP2 gene was observed in one N and four T, whereas partial promoter methylation (PPM) was observed in two N and five T. OPM in the P16 gene was present in one T. In the DAPK1 gene, OPM existed in seven T and five N, while PPM was present in two N. In the HIC1 gene, OPM was demonstrated in three T, while PPM was noted in two N; however, no methylation existed in N. In the MGMT gene, OPM occurred in five T and two N, and PPM was present in one T. KRAS mutations in Turkish patients with SCRC are similar to those of other population groups. Methylations in the genes, which underwent methylation analysis, were higher in T in comparison with N, and it has been suggested that significant results would be obtained by making a study with a larger population.  相似文献   

13.
Jalili syndrome (JS) is an autosomal recessive disease characterized by a combination of cone-rode retinal dytrophy (CRD) and amelogenesis imperfect (AI). Mutations in cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene cause JS. Here we described 2 families (3 members) affected by JS. In the first family, JS was caused by the homozygous p.Leu324Pro (c.971T > C) missense mutation and the affected patient developed both CRD and AI. In the second family, a specific combination of a compound heterozygous mutation was found – the p.Leu324Pro (c.971T > C) missense transition and the novel p.Tyr581* (c.1743C > G) nonsense mutation. The proband showed CRD and AI, but her father just developed eye alterations. Together, these findings suggest that the p.Leu324Pro mutation in homozygosis induces a complete phenotype with both CRD and AI, but in heterozygosis and in composition with the novel p.Tyr581* nonsense mutation in CNNM4 promotes variable clinical expressivity, particularly with lack of dental phenotypes. These different phenotypes could be explained by deletions affecting the proband's homologous allele, epistasia or interactions with environmental factors leading to residual activity of protein.  相似文献   

14.
In the last decade, several genes have been linked to Parkinson's disease (PD), including GIGYF2, ATP13A2 and GBA. To explore whether mutations in these genes contribute to development of PD in the Brazilian population, we screened 110 patients with early-onset PD. No clearly pathogenic mutations were identified in ATP13A2 and GIGYF2. In contrast, we identified a significantly higher frequency of known pathogenic mutations in GBA gene among the PD cases (6/110 = 5.4%) when compared to the control group (0/155) (P = 0.0047). Our results strongly support an association between GBA gene mutations and an increased risk of PD. Mutations in GIGYF2 and ATP13A2 do not seem to represent a risk factor to the development of PD in the Brazilian population. Considering the scarcity of studies on GIGYF2, ATP13A2 and GBA mutation frequency in Latin American countries, we present significant data about the contribution of these genes to PD susceptibility.  相似文献   

15.
Joubert syndrome is an autosomal recessive disorder comprising cerebellar hypoplasia, hypotonia, developmental delay, abnormal respiratory patterns, and abnormal eye movements. The biochemical basis of the Joubert syndrome is unknown. We ascertained a cohort of 50 patients with the Joubert syndrome to evaluate the presence of associated malformations, and to initiate studies leading to the identification of the Joubert syndrome gene. Only 8% of patients had polydactyly, 4% colobomas, 2% renal cysts, and 2% had soft tissue tumors of the tongue. In addition, we evaluated the WNT1 gene as a candidate gene for the Joubert syndrome based on its expression in the developing cerebellum and an associated mutation in the swaying mouse. We searched for mutations in WNT1 in a series of Joubert syndrome patients and no mutations were detected. Our analysis suggests that mutations in WNT1 do not cause the Joubert syndrome. Am. J. Med. Genet. 72:59–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Orofaciodigital syndrome (OFD) can have variable phenotype and presents with oral anomalies, facial dysmorphism, and digital malformations like syndactyly, and polydactyly. Other presentations also include renal and cardiac defects, and central nervous system anomalies like hydrocephalus and cerebellar abnormalities. OFD1 is a X‐linked dominant form of the syndrome presenting in females with mutations in CXorf5 or OFD1 gene. We describe a young child with sparse hairs, milia over face and absence of corpus callosum. Next generation sequencing showed frameshift pathogenic variant in the exon 13 of the OFD1 gene, consistent with diagnosis of OFD1.  相似文献   

17.
We describe moderate hyperbilirubinemia in a 28-year-old man who suffered from gallstones and splenomegaly, with combined disorders of hereditary spherocytosis (HS) and Gilbert''s syndrome (GS). Since it is difficult to diagnose HS in the absence of signs of anemia, we evaluated both the genetic mutation in the UGT1A1 gene and abnormalities in the erythrocyte membrane protein; the former was heterozygous for a UGT1A1 allele with three mutations and the latter was partially deficient in ankyrin expression. This is the first report of the concomitance of HS and GS with three heterozygous mutations [T-3279G, A (TA)7TAA, and G211A] in the UGT1A1 gene.  相似文献   

18.
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign''. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.  相似文献   

19.
A causative association was recently demonstrated between homozygous TREM2 mutations and frontotemporal dementia (FTD)-like syndrome and between heterozygous TREM2 exon2 genetic variations and late-onset Alzheimer's disease (AD). The objective of this study was to evaluate whether heterozygous TREM2 genetic variations might be associated to the risk of FTD. TREM2 exon 2 was sequenced in a group of 1030 subjects—namely, 352 patients fulfilling clinical criteria for FTD, 484 healthy control subjects (HCs), and 194 patients with AD. The mutation frequency and the associated clinical characteristics were analyzed. We identified 8 missense and nonsense mutations in TREM2 exon 2 in 24 subjects. These mutations were more frequent in patients with FTD than in HCs (4.0% vs. 1.0%, p = 0.005). In particular, TREM2 Q33X, R47H, T66M, and S116C mutations were found in FTD and were absent in HCs. These mutations were associated with either the semantic variant of primary progressive aphasia or the behavioral variant FTD phenotypes. The FTD and AD groups were not significantly different with regard to TREM2 genetic variation frequency (AD: 2.6%, p = 0.39). Heterozygous TREM2 mutations modulate the risk of FTD in addition to increasing susceptibility to AD. Additional studies are warranted to investigate the possible role of these mutations in the pathogenesis of neurodegenerative disorders.  相似文献   

20.
3MC syndrome is a rare autosomal recessive disorder with characteristic craniofacial dysmorphism and multiple anomalies. It is caused by biallelic mutations in one of three genes, MASP1, COLEC11 and COLEC10, all encoding factors of the lectin complement pathway. In MASP1, either truncating mutations or missense variants in exon 12 encoding the C-terminal serine protease domain specific for isoform MASP-3 are causative.By trio exome sequencing we now identified a novel, homozygous 2kb deletion, partially affecting exon 12 in an adult female with the typical facial gestalt of 3MC syndrome and hearing loss, but without the main feature cleft lip/palate, and without intellectual disability, or short stature. We therefore expand the MASP1 associated mutational and clinical spectrum and describe the development of her clinical presentation over a period of 21 years. As the homozygous deletion in our patient was only found by thorough and visual evaluation of the whole exome sequencing data, such deletions might escape detection in some routine diagnostic workflows and might explain a few of the so far molecularly unconfirmed cases of 3MC syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号