首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
为了建立聚乙二醇 (PEG) 巯基定点修饰溶葡球菌酶的方法,并检验假定连接区的突变与修饰对酶活的影响,对溶葡球菌酶的假定连接区进行了巯基聚乙二醇定点修饰研究。通过分析溶葡球菌酶的结构特征,选择两个结构域之间的氨基酸 (133-154aa) 进行定点突变引入半胱氨酸残基。使用单甲氧基聚乙二醇马来酰亚胺 (mPEG-MAL) 进行定点修饰,对修饰后的酶进行纯化并测定酶活性。结果表明定点突变的半胱氨酸残基PEG修饰效率高、产物单一,运用简便的Ni2+-NTA柱亲和层析法实现了一步分离,获得了高纯度的目标蛋白,但在连接区进行定点突变及PEG定点修饰后的酶活有不同程度的降低,表明假定连接区部分位点的PEG修饰会对溶葡球菌酶的催化活性产生一定影响。  相似文献   

2.
目的:设计构建集成干扰素突变体IIFN72C并进行聚乙二醇定点修饰,以获得高活性的长效干扰素分子。方法:利用蛋白质分子同源模建,选择在集成干扰素分子IIFN的第72位引入半胱氨酸残基构成集成干扰素突变体IIFN72C。诱导表达后经包涵体变复性和层析纯化,与单甲氧基聚乙二醇(mPEGMAL)定点偶联。修饰产物经纯化后,以SDSPAGE考察其纯度,用WISHVSV系统进行生物活性测定。结果:IIFN72C以包涵体形式表达,表达量占菌体总蛋白的30%以上,比活性与突变前相当;修饰产物大多数为单修饰体,纯化后纯度大于98%,比活性保留约为修饰前的8%。结论:成功设计并表达IIFN72C用于PEG定点修饰,修饰产物活性保留得以提高。  相似文献   

3.
单克隆抗体亲和层析法纯化重组溶葡萄球菌酶   总被引:1,自引:0,他引:1  
溶葡萄球菌酶能够特异性杀灭金黄色葡萄球菌且不易产生耐药性, 有望成为治疗葡萄球菌属细菌引发感染的特效药物。为获得高纯度的重组溶葡萄球菌酶以达到药用标准, 本研究构建了一种以重组溶葡萄球菌酶单克隆抗体为配体的亲和层析纯化方法。纯化后的重组溶葡萄球菌酶纯度大于95%, 得率大于90%, 即使重复使用30多次, 纯化效率不变。且经比色法鉴定纯化后的重组溶葡萄球菌酶仍具有良好的活性。该方法步骤简单, 纯化效果好, 为生产高纯度重组溶葡萄球菌酶奠定了基础。  相似文献   

4.
重组人超氧化物歧化酶化学修饰的初步研究   总被引:4,自引:0,他引:4  
在高效表达重组人铜锌超氧化物歧化酶(rh Cu/Zn SOD),并纯化得到比活大于4000单位的 rh Cu/Zn SOD 纯品的基础上,采用活化酯法将聚乙二醇(PEG)与 rhCu/Zn SOD 交联,获得分子量约6万的 PEG-SOD 交联物.经 PEG 修饰的酶稳定性增强,表现为对酸、碱和热的耐受力均较未交联酶高.修饰酶的生物半衰期为15h,是天然酶的90倍,酶活性保留80%以上.还实验观察了修饰剂用量与修饰酶保留活性之间的关系.  相似文献   

5.
聚乙二醇定点修饰集成干扰素突变体Ⅱ   总被引:1,自引:0,他引:1  
目的:用聚乙二醇(PEG)修饰集成干扰素突变体Ⅱ(IFN-Con-m2,IIFNm2),通过纯化获得新型修饰分子并对该分子进行抗胰蛋白酶水解稳定性及初步药代动力学研究。 方法:将mPEG20000定点偶联到IIFNm2的第86位Cys残基上,修饰后的产物经CM层析后,以SDS-PAGE考察其纯度,用WISH-VSV系统进行生物活性测定;在0.1%胰蛋白酶条件下考察体外抗酶解稳定性;并以SD大鼠进行初步药代动力学研究,绘制血药浓度-时间曲线。采用3P87软件进行数据拟合,分析药物动力学参数。 结果:干扰素修饰率约为50%,且绝大多数以单修饰体(mono-PEG- IIFNm2)形式存在;提纯后mono-PEG-IIFNm2 的纯度大于98%,比活性约为修饰前IIFNm2的1%。抗胰蛋白酶水解试验表明:30min后,IIFNm2抗病毒活性残留为8%,mono-PEG-IIFNm2为41%。初步药代动力学研究显示:IIFNm的消除半衰期为(1.57±0.34)h,mono-PEG-IIFNm2为(18.0±4.0)h。 结论:成功地偶联了PEG和IIFNm2,建立了mono-PEG-IIFNm2的纯化工艺,PEG修饰能增加IIFNm2的体外抗胰蛋白酶水解稳定性,并显著延长体内半衰期。  相似文献   

6.
探索一种综合聚唾液酸(PSA)和聚乙二醇(PEG)优势的蛋白修饰方法。对纯化的聚唾液酸进行两步活化,先在非还原端氧化产生活性醛基,再加入胱胺形成活性巯基;活化的聚唾液酸(相对分子质量为3.4×104)和异基双功能的PEG(相对分子质量为3.5×103)形成嵌段聚合物,然后于4℃修饰尿酸酶。利用凝胶层析(Toyopearl HW-55F)对修饰后的尿酸酶进行纯化,收集相应峰进行化学法和SDS-PAGE电泳鉴定,经多角度激光光散射凝胶系统测定缀合物相对分子质量为5.214×105;相对于原始酶,修饰酶酶活保留率72.4%,体外热失活半衰期由115.5 h提高到231 h,对高温、酸碱、胰蛋白酶的耐受稳定性显著提高。  相似文献   

7.
目的:探讨聚乙二醇(PEG)修饰重组溶葡球菌酶(lysostaphin)的反应条件以及修饰后产物的纯化方法.方法:采用超声波细胞粉碎机进行菌体破碎,阳离子交换层析、疏水层析进行蛋白纯化;在不同条件下,将活化的单甲氧基聚乙二醇琥珀酰亚胺丙酸酯(mPEG-SPA)与纯化后的lysostaphin反应,以单个PEG-Lysostaphin的比例为指标,用SDS-PAGE、MALDI-TOF-MS方法确定其在修饰产物中的所占比例;采用Sephacryl S-200分子筛凝胶层析法对修饰产物进行分离纯化.结果:mPEG-SPA修饰lysostaphin的反应条件为pH 8.0,温度4℃,lysostaphin与mPEG-SPA的质量比为1∶5,反应时间2.0h;反应产物经一步Sephacryl S-200分子筛凝胶层析纯化后,初步实现分离.结论:初步确定了聚乙二醇修饰lysostaphin的反应条件及修饰产物的纯化方法.  相似文献   

8.
利用人白细胞介素11(hIL-11)无半胱氨酸(Cys)残基这一特点,通过定点突变将一个Cys残基引入hIL-11的N末端。然后,利用与Cys 巯基特异性反应的mPEG-马来酰亚胺将mPEG偶联到预先选定的位点,经层析纯化得到hIL-11的定点PEG修饰物。利用依赖型细胞株7TD1测定其生物学活性,结果表明,其体外生物学活性保持原有hIL-11活性的30%左右。定点聚乙二醇修饰方法为定向改造hIL-11,提高其药效的应用研究打下基础。  相似文献   

9.
研究了重组人粒细胞集落刺激因子突变体(rmhG-CSF)的聚乙二醇化修饰、分离纯化和活性鉴定。通过对人重组粒细胞集落刺激因子(rhG-CSF)第1,3,4,5,17位氨基酸进行突变,并在C末端加了一个半胱氨酸,获得了体外活性为原型rhG-CSF150%以上的重组人粒细胞集落刺激因子突变体(rmhG-CSF)。然后用分子量为20kD的甲氧聚乙二醇马来酸酐(mPEG-Mal)修饰rmhG-CSF,反应混合物经离子交换和凝胶过滤柱纯化,得到纯化的聚乙二醇重组人粒细胞集落刺激因子突变体(PEG-rmhG-CSF)。SDS-PAGE电泳分析表明纯化后的PEG-rmhG-CSF的纯度大于95%,体外活性分析表明PEG-rmhG-CSF活性优于目前临床使用的聚乙二醇重组人粒细胞集落刺激因子(PEG-rhG-CSF,NeulastaR○),药代动力学研究表明PEG-rmhG-CSF体内半衰期约为14h,比修饰前延长了7倍。  相似文献   

10.
重组人粒细胞集落刺激因子的表达、纯化以及PEG修饰   总被引:1,自引:0,他引:1  
重组人粒细胞集落刺激因子(rhG-CSF)经大肠杆菌温度诱导表达后,其表达产物以包涵体形式存在,包涵体经过变性、复性和分离纯化等步骤处理后得到纯化的rhG-CSF.在一定的实验条件下用单甲氧基聚乙二醇活性酯(mPEG20k-NHS)对rhG-CSF进行化学修饰,所得修饰产物经分离纯化后获得PEG20K-rhG-CSF偶联物.与修饰前的rhG-CSF相比较,尽管修饰后的rhG-CSF体外生物学活性下降至修饰前的20%左右,但其在体内的作用时间能够得到显著的延长,药效有了明显提高.  相似文献   

11.
[目的]为解决溶栓后再栓塞问题,构建N-端含RGD(Arg-Gly-Asp)序列的葡激酶双功能突变体.研究突变体的表达和纯化,并进行性质分析.[方法]将突变后的葡激酶突变体序列连入pBV220质粒,转化大肠杆菌BL21进行表达.阳离子交换、凝胶过滤和阴离子交换三步层析法纯化表达产物,采用溶圈法对纯化产物进行生物学活性测定,并测定纯化产物对血小板聚集的抑制效应.[结果]PAGE扫描结果显示,葡激酶突变体蛋白在大肠杆菌BL21中的表达量约占菌体蛋白总量的40%~50%;三步层析纯化后,HPLC测定其纯度可达95%.酪蛋白凝胶板溶圈法测得其比活性分别为10.8×104和11.0×104HU/mg,与野生型葡激酶活性相当;且具有明显的抗血小板聚集活性,血小板聚集仪测定其血小板聚集抑制率分别为10.72%和19.71%,明显高于野生型葡激酶血小板聚集抑制率.本实验利用pBV220载体高效表达了葡激酶突变体基因,得到了高纯度、高活性的突变体蛋白,为葡激酶生产产业化和临床应用奠定了良好的基础.  相似文献   

12.
The Helicobacter pylori ureE gene product was previously shown to be required for urease expression, but its characteristics and role have not been determined. The UreE protein has now been overexpressed in Escherichia coli, purified, and characterized, and three altered versions were expressed to address a nickel-sequestering role of UreE. Purified UreE formed a dimer in solution and was capable of binding one nickel ion per dimer. Introduction of an extra copy of ureE into the chromosome of mutants carrying mutations in the Ni maturation proteins HypA and HypB resulted in partial restoration of urease activity (up to 24% of the wild-type levels). Fusion proteins of UreE with increased ability to bind nickel were constructed by adding histidine-rich sequences (His-6 or His-10 to the C terminus and His-10 as a sandwich fusion) to the UreE protein. Each fusion protein was overexpressed in E. coli and purified, and its nickel-binding capacity and affinity were determined. Each construct was also expressed in wild-type H. pylori and in hypA and hypB mutant strains for determining in vivo urease activities. The urease activity was increased by introduction of all the engineered versions, with the greatest Ni-sequestering version (the His-6 version) also conferring the greatest urease activity on both the hypA and hypB mutants. The differences in urease activities were not due to differences in the amounts of urease peptides. Addition of His-6 to another expressed protein (triose phosphate isomerase) did not result in stimulation of urease, so urease activation is not related to the level of nonspecific protein-bound nickel. The results indicate a correlation between H. pylori urease activity and the nickel-sequestering ability of the UreE accessory protein.  相似文献   

13.
Tn5 transposon mutagenesis via electroporation of Pseudomonas fluorescens AU63 was used to generate mutants deficient in antifungal activity against the phytopathogenic fungi Pythium ultimum and Thielaviopsis basicola. Mutant C-45 was obtained by an initial screen for the loss of antibacterial activity against Bacillus subtilis and a subsequent screen of mutants obtained for the loss of antifungal activity against pathogenic fungi. A single chromosomal insertion of Tn5 in the chromosome of Ps. fluorescens C-45 was confirmed by Southern blot hybridization. A metabolite responsible for the observed antibacterial and antifungal activities was identified using thin layer chromatography. The antimicrobial activities of the partially purified substance present in the parental strain and missing in the C-45 mutant were not affected by protease, high temperature, acid or alkali treatment. These results provide the basis for a structural analysis of this new antimicrobial substance and the genetic elucidation of its biosynthesis.  相似文献   

14.
对核苷二磷酸激酶A(NDPK-A)及其4种半胱氨酸突变体进行诱导表达及纯化,测定它们在氧化还原条件及正常条件下的磷酸转移酶活性,研究氧化还原及二硫键异构对NDPK-A及突变体活性的影响。将实验室之前构建成功的野生型NDPK-A(PBV-NDPK-A)及4种突变型NDPK-A基因(PBV-NDPK-A C4S,PBV-NDPK-A C109S,PBV-NDPK-A C145S,PBV-NDPK-A C4/109/145S)在大肠杆菌中高效表达;以DEAE-sepharose Fast Flow离子交换层析与Cibacron Blue 3GA Sepharose CL-4B亲和层析技术纯化目的蛋白;HPLC法测定比较野生型NDPK-A及突变体在氧化还原和正常环境下磷酸转移酶活性。结果显示,NDPK-A及突变体在大肠杆菌中高效表达;经纯化分别获得了均一的NDPK-A蛋白及突变体蛋白,纯度均达到98%;在还原环境下NDPK-A及突变体的磷酸转移酶活性均高于正常环境下的活性,但是在氧化环境下的磷酸转移酶活性明显低于正常环境下。氧化还原环境对NDPK-A结构异构及磷酸转移酶活性有一定的影响,提示氧化还原环境可能调控NDPK-A二硫键的形成,影响蛋白的聚集状态,从而影响蛋白的磷酸转移酶活性,并且NDPK-A结构中可能有更为复杂的氧化还原调控酶活性机制。  相似文献   

15.
SARS冠状病毒核衣壳(N)蛋白不同区域的原核表达   总被引:4,自引:1,他引:3  
利用大肠杆菌表达系统对SARS冠状病毒的核衣壳(N)蛋白全长及N末端或/和C末端缺失突变体进行了表达,共表达了39个重组蛋白,表达量在15%~30%之间。分别利用电洗脱或金属鳌合介质纯化重组蛋白,用蛋白印迹实验检测纯化蛋白对SARS病人恢复期血清的反应性,结果发现全长N蛋白活性最好,其余的末端缺失蛋白均无法达到同—:活性水平。由此说明N蛋白的完整性对于其优势表位的充分暴露是必要的。  相似文献   

16.
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.  相似文献   

17.
The intestinal mucoprotein synthesis rate was measured in vivo for the first time. For this, a rapid, reproducible, and convenient method to purify mucoproteins from large numbers of intestinal samples at the same time was developed. The method takes advantage of both the high mucin resistance to protease activities due to their extensive glycosylations and the high mucin molecular size. Intestinal homogenates were partially digested with Flavourzyme. Nonprotected proteins partially degraded were easily separated from mucoproteins by small gel filtration chromatography using Sepharose CL-4B. Electrophoretically pure mucins were obtained. Their amino acid composition was typical of purified intestinal epithelial mucins. The mucoprotein synthesis rate was determined in vivo in rats using the flooding dose method with the stable isotope L-[1-13C]valine. Free L-[1-13C]valine enrichments in the intracellular pool were determined by GC-MS. L-[1-13C]valine enrichments into purified mucoproteins or intestinal mucosal proteins were measured by gas chromatography-combustion-isotope ratio mass spectrometry. In rats, we found that the gut mucosa protein synthesis rate (%/day) decreased regularly from duodenum (122%/day) to colon (43%/day). In contrast, mucoprotein fractional synthesis rates were in the same range along the digestive tract, between 112%/day (colon) and 138%/day (ileum).  相似文献   

18.
A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5T isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30–35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.  相似文献   

19.
The Rab family of small GTPases are key regulators of membrane trafficking. Partially purified Rab8 from Bombyx mori (BRab8) was phosphorylated by protein kinase C in mammalian cells in vitro. To determine which of the seven serines and four threonines are phosphorylated, we generated deletion and site-directed mutants of BRab8, inserted them in Escherichia coli, partially purified the encoded fusion proteins by affinity chromatography, and examined their phosphorylation by protein kinase C in vitro. We found that Ser-132 of BRab8 was specifically phosphorylated by protein kinase C. In addition, Western blotting using an antiserum against BRab8 and in-gel staining for phosphorylated proteins revealed that BRab8 is phosphorylated in vivo.  相似文献   

20.
Herpesviruses encode an essential, maturational serine protease whose catalytic domain, assemblin (28 kDa), is released by self-cleavage from a 74-kDa precursor (pPR, pUL80a). Although there is considerable information about the structure and enzymatic characteristics of assemblin, a potential pharmacologic target, comparatively little is known about these features of the precursor. To begin studying pPR, we introduced five point mutations that stabilize it against self-cleavage at its internal (I), cryptic (C), release (R), and maturational (M) sites and at a newly discovered "tail" (T) site. The resulting mutants, called ICRM-pPR and ICRMT-pPR, were expressed in bacteria, denatured in urea, purified by immobilized metal affinity chromatography, and renatured by a two-step dialysis procedure and by a new method of sedimentation into glycerol gradients. The enzymatic activities of the pPR mutants were indistinguishable from that of IC-assemblin prepared in parallel for comparison, as determined by using a fluorogenic peptide cleavage assay, and approximated rates previously reported for purified assemblin. The percentage of active enzyme in the preparations was also comparable, as determined by using a covalent-binding suicide substrate. An unexpected finding was that, in the absence of the kosmotrope Na2SO4, optimal activity of pPR requires interaction through its scaffolding domain. We conclude that although the enzymatic activities of assemblin and its precursor are comparable, there may be differences in how their catalytic sites become fully activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号