首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文通过在双氰胺前驱体中添加聚乙二醇,在缩聚过程实现碳掺杂形成含氮空位的g-C3N4光催化剂。通过X射线衍射(XRD)、红外光谱(FTIR)、光电子能谱(XPS)、紫外-可见吸收光谱(UV-Vis)和荧光谱(FL)等表征手段,考察了原位聚合碳掺杂形成氮空位对g-C3N4物相结构、组分与化学态、光吸收性能及光催化活性的影响。研究结果表明,采用该方法可实现原位聚合碳掺杂,有效拓展g-C3N4的可见光吸收至850 nm,在紫外-可见光与可见光照射下光降解RhB及光催化产氢性能均显著提高,尤其可见光条件下的性能提升更为显著。  相似文献   

2.
本实验制备了一种Z型含氮缺陷的石墨相氮化碳(LaFeO3/CQDs-g-C3Nx)复合光催化剂。利用X射线衍射(XRD)、紫外-可见光漫反射(UV-Vis DRS)、光致发光光谱(PL)、扫描电镜(SEM)、透射电镜(TEM)以及X射线光电子能谱(XPS)等手段对催化剂进行了表征。结果表明,氮缺陷和CQDs的引入能增强光生载流子的迁移效率。LaFeO3/CQDs-gC3Nx复合材料对罗丹明B(RhB)的光催化降解率是纯g-C3N4的3.98倍,并具有良好的光催化稳定性。同时对抗生素和其他有机污染物也表现出良好的降解能力。  相似文献   

3.
为提高石墨相氮化碳(g-C3N4)对可见光的利用率及光催化效率,采用热聚合与直接负载等方法,将g-C3N4负载于蒙脱石表面,制备了g-C3N4/蒙脱石复合光催化材料,其结构经SEM, FT-IR及XRD表征。以罗丹明B(RhB)为目标污染物,研究了不同负载量g-C3N4/蒙脱石复合光催化剂的可见光催化性能。并分别以对苯醌、碘化钾和异丙醇为自由基捕获剂,研究了复合材料的光催化机理。结果表明:当g-C3N4的质量分数为83%(CN/M-83%)时,RhB经可见光照射1 h后,降解率达到99.2%。光催化速率常数为纯g-C3N4光催化速率常数的3.2倍。  相似文献   

4.
通过水热和原位还原法制备了一种新型Z型异质结三元复合材料Au NPs/g-C3N4/BiOBr,并通过X射线衍射、X射线光电子能谱、透射电子显微镜、紫外-可见漫反射光谱和光致发光发射光谱等技术对材料的形貌、结构进行了表征。通过在可见光下降解苯酚来评价光催化剂的活性。研究发现,Au NPs/g-C3N4/BiOBr显示出增强的光催化活性,对苯酚的降解能力是g-C3N4的3倍,是BiOBr的2.5倍。这可归因于三元复合材料的窄带隙(2.10eV)、Z型机理对光生电子-空穴对的有效分离和Au纳米颗粒的表面等离子体共振效应(SPR)。  相似文献   

5.
以双氰胺、醋酸锌、钼酸铵、醋酸镉和硫化钠为原料,采用水热法合成了一系列Zn-Mo共掺杂CdS(Zn-Mo-CdS),并与g-C3N4组成异质结催化剂(Zn-Mo-CdS/g-C3N4)。采用X射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明, Zn-Mo-CdS与g-C3N4之间紧密结合并形成异质结,促进界面电荷迁移,抑制光生电子-空穴对的复合。以可见光下降解染料罗丹明B (RhB)为探针反应考察了催化剂性能。结果表明, Zn-Mo-CdS/g-C3N4异质结催化剂的光催化性能与单纯g-C3N4、Zn-Mo-CdS及双金属硫化物/g-C3N4异质结催化剂相比均有大幅度提高,质量比m(Zn-Mo-CdS)/m(g-C3N4) = 4 : 1时制备的异质结催化剂表现出最大的降解速率常数,是单纯g-C3N4和Zn-Mo-CdS的30倍和10倍。不仅Zn-Mo-CdS,其他三元金属复合硫化物如Mo-Ni-CdS和Ni-Sn-CdS与g-C3N4之间也能有效构筑异质结,促进电子-空穴对的分离和催化性能提升。  相似文献   

6.
通过在尿素前驱体中添加单宁酸, 原位缩聚形成碳自掺杂石墨相氮化碳(g-C3N4). 利用X射线光电子能谱(XPS)、 场发射扫描电子显微镜(FESEM)、 X射线衍射(XRD)仪和同步热分析(TG-DSC)等方法对碳自掺杂 g-C3N4的形貌、 物相结构和能带价态组分进行表征分析, 结合紫外-可见吸收光谱(UV-Vis)和原位光微量热-荧光光谱联用仪获得碳自掺杂g-C3N4降解罗丹明B的原位热/动力学信息和三维荧光光谱信息, 探讨了光催化降解罗丹明B的微观机制. 结果表明, 单宁酸浓度≤10 mg/mL时, 碳会取代七嗪单元结构的氮原子形成g-C3N4骨架碳自掺杂; 单宁酸浓度≥ 20 mg/mL时, 碳以无定形形式沉积负载在g-C3N4表面上形成无定形碳自掺杂. 骨架碳自掺杂g-C3N4形成的π电子有效缩短了禁带宽度, 减小了光生电子-空穴复合几率, 比无定形C掺杂g-C3N4显示出更优异的光催化性能, 催化主要活性物种为h+和·O2-. 碳自掺杂g-C3N4光催化降解过程可分为光响应吸热、 降解污染物放热平衡过程和稳定放热3个过程. 其中骨架碳自掺杂g-C3N4(C/N摩尔比为0.844)在光照1000 s内, 三维荧光光谱检测的RhB降解率锐减, 光照1000 s后, 其RhB降解率为87.6%, 分别是原始g-C3N4和无定形碳自掺杂g-C3N4的3.13倍和1.95倍. 光照1000 s后, 光微量热计显示以矿化和降解非荧光发色中间产物为主, 并保持以热变速率为(0.9799±0.5356) μJ/s稳定放热, 为拟零级反应过程, 是光催化反应的决速步骤.  相似文献   

7.
通过水热反应合成了Sb2WO6改性的g-C3N4复合材料(Sb2WO6 /g-C3N4). 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 紫外-可见漫散射反射光谱(UV-Vis DRS)和光致发光光谱(PL)等表征了样品的性质. 结果表明, Sb2WO6在g-C3N4的表面上生长, 并且复合材料光吸收能力有一定的增强, 光生电子-空穴的重组率降低. 通过罗丹明B(RhB)的光降解评价了Sb2WO6/g-C3N4复合材料的光催化性能. 结果表明, 模拟日光下Sb2WO6质量分数为10%的Sb2WO6/g-C3N4复合材料在60 min内对RhB的降解率为99.3%, 高于纯g-C3N4和Sb2WO6. Sb2WO6/g-C3N4复合材料的这种高度增强的光催化活性主要归因于强的界面相互作用促进了光生电子-空穴分离和迁移. 添加自由基清除剂的实验结果表明, ·O2-和h+是光催化反应中的主要活性物质. Sb2WO6/g-C3N4复合材料在几个反应周期内表现出优异的稳定性. 根据实验结果提出了一种可能的Z型光催化机理.  相似文献   

8.
采用简单的化学还原法在g-C3N4纳米片上原位合成了一种小尺寸CoNi双金属助催化剂并研究了其光催化活性。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)、电化学阻抗(EIS)等手段对制备的CoNi/g-C3N4的理化性能进行了表征。光催化降解RhB实验表明,CoNi双金属助催化剂能有效提高g-C3N4中光生载流子的分离效率,从而提高光催化活性。当CoNi物质的量比为1:1时,CoNi/gC3N4的催化活性最高,其降解速率为0.01633 min-1,在可见光照射下比g-C3N4提高3.9倍,该光催化剂在五次循环后仍能保持良好光催化活性,该反应的主要活性物种为超氧自由基(·O2-)。  相似文献   

9.
利用界面聚合法, 成功将聚苯胺(PANI)纳米棒生长在石墨型氮化碳(g-C3N4)片层上, 制备了PANI/g-C3N4复合光催化剂. 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、热重分析(TGA)和电化学工作站表征手段考察样品的结构、形貌及性能, 以可见光催化降解亚甲基蓝为模型考察样品的可见光催化活性. 实验结果表明, 在复合材料中的g-C3N4能很好地分散成层状, 并在层间与PANI纳米棒形成复合物, 这种特殊的复合结构不仅利于片状g-C3N4对PANI链段运动的限制及对其降解产物的物理屏蔽, 从而可以提高复合材料的热稳定性, 而且具有优越的可见光催化性能.  相似文献   

10.
分别采用热解法和溶胶-凝胶-碳热还原法合成了石墨相氮化碳(g-C3N4)和纳米级碳化硅(β-SiC), 通过浸渍-热处理法将两者复合并通过浓盐酸质子化, 分别制备了g-C3N4/β-SiC和质子化g-C3N4/β-SiC(P-g-C3N4/β-SiC)复合光催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 高分辨透射电子显微镜(HRTEM)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 紫外-可见漫反射光谱(UV-Vis-DRS)和光致发光光谱(PL)等对样品进行了表征. 结果表明, P-g-C3N4/β-SiC复合材料的比表面积增大, 光生电子-空穴对的复合几率降低, 光催化性能明显提高. 在光催化降解染料茜素红(ARS)研究中, 样品的可见光催化活性顺序为P-g-C3N4/β-SiC>g-C3N4/β-SiC>P-g-C3N4>g-C3N4>β-SiC. 其中P-g-C3N4/β-SiC在60 min内对ARS的降解效率高达99.9%, 符合准一阶动力学模型, 速率常数为0.0967 min -1, 且循环使用9次后, 光催化降解效率仍保持97.5%以上.  相似文献   

11.
以尿素为原料,引入少量的多壁碳纳米管(CNT)改性,采用简便方法制备CNT/g-C_3N_4催化剂。利用扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱仪(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见-近红外分光光度计(UV-Vis-NIR Spectrophotometer)、荧光光谱(PL)等手段对CNT/g-C_3N_4催化剂进行表征。结果表明,g-C_3N_4与CNT之间的协同作用,影响了gC_3N_4的能带结构,增强了其对可见光的吸收,改善了光生载流子的分布,提高了电子-空穴对的分离效率。并以罗丹明B(RhB)水溶液模拟废水,在可见光下考察催化剂的光催化降解性能,发现当CNT掺杂量为0.1%(w/w)时效果最佳,降解速率常数是体相g-C_3N_4的3.1倍,且研究发现超氧自由基是该体系下的主要活性物种。  相似文献   

12.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS2,将其与石墨相氮化碳(g-C3N4)复合,制得MoS2/g-C3N4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS2/g-C3N4复合材料光催化降解罗丹明B(RhB)的活性,结果表明:将少量MoS2与g-C3N4复合可明显提高光催化活性,且1%(w/w)MoS2/g-C3N4复合物的光催化活性最高,可能的原因是MoS2和g-C3N4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

13.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

14.
Fe掺杂g-C3N4的制备及其可见光催化性能   总被引:1,自引:0,他引:1  
以硝酸铁和三聚氰胺为原料制备不同含铁量的Fe 掺杂石墨氮化碳(g-C3N4). 采用X 射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FT-IR)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征. 结果表明,铁以离子形式镶嵌在g-C3N4的结构单元中,影响了g-C3N4的能带结构,增加了g-C3N4对可见光的吸收,降低了光生电子-空穴对的复合几率. 以染料罗丹明B的降解为探针反应系统研究了不同含铁量对g-C3N4在可见光下催化性能的影响. 结果表明,m(Fe)/m(g-C3N4)=0.14%时,制备的Fe 掺杂g-C3N4表现出最佳的光催化性能,120 min 内罗丹明B的降解率高达99.7%,速率常数达到0.026 min-1,是纯g-C3N4的3.2 倍. 以叔丁醇、对苯醌、乙二胺四乙酸二钠为自由基(·OH)、自由基(O2)和空穴(hVB+)的捕获剂,研究了光催化反应机理.  相似文献   

15.
以三聚氰胺和碳酸氢铵混合物为原料,采用简便热解法制备g-C_3N_4纳米管。热解过程中碳酸氢铵分解释放出大量的NH3,能够诱导纳米管的形成。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)、N_2吸附-脱附、紫外-可见漫反射光谱以及紫外可见光谱(UV)等分析测试方法对该光催化剂的微观形貌结构和催化性能进行了表征。以罗丹明光催化降解为模型反应研究了g-C_3N_4纳米管的光催化活性。g-C_3N_4纳米管的表面积明显增大,且能够有效地促进光生电子转移,在可见光下具有较强的光催化性能,降解率在60和120 min时分别能达到95%和99.4%,且循环重复利用5次后降解率不低于92%。  相似文献   

16.
以三聚氰胺和碳酸氢铵混合物为原料,采用简便热解法制备g-C3N4纳米管。热解过程中碳酸氢铵分解释放出大量的NH3,能够诱导纳米管的形成。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)、N2吸附-脱附、紫外-可见漫反射光谱以及紫外可见光谱(UV)等分析测试方法对该光催化剂的微观形貌结构和催化性能进行了表征。以罗丹明光催化降解为模型反应研究了g-C3N4纳米管的光催化活性。g-C3N4纳米管的表面积明显增大,且能够有效地促进光生电子转移,在可见光下具有较强的光催化性能,降解率在60和120 min时分别能达到95%和99.4%,且循环重复利用5次后降解率不低于92%。  相似文献   

17.
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。  相似文献   

18.
以双氰胺和氢氧化钾为原料制备了能带可控的钾离子掺杂石墨型氮化碳(g-C3N4)光催化剂,并与碱处理的g-C3N4及g-C3N4/KOH复合催化剂进行了对比。采用X射线衍射(XRD)光谱、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、N2吸附、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X 光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明,钾离子含量对氮化碳催化剂的价带及导带位置有显著影响。此外,钾离子的引入抑制了氮化碳晶粒的生长,提高了氮化碳的比表面积以及对可见光的吸收,降低了光生电子-空穴对的复合几率。以染料罗丹明B的降解为探针反应系统研究了钾离子掺杂对g-C3N4在可见光下催化性能的影响,研究了光催化反应机理。结果表明,钾离子掺杂后氮化碳的光催化性能显著提高。制备的钾离子掺杂氮化碳催化剂表现出良好的结构及催化稳定性。  相似文献   

19.
Novel NiO/Cd/g-C3N4 photocatalysts were synthesized using a green and straightforward microwave-assisted method and characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), the Brunauer–Emmett–Teller (BET) method, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet–visible spectroscopy (UV–Vis). The ternary NiO/Cd/g-C3N4 nanocomposites were evaluated for the degradation of methylene blue (MB) at room temperature under the visible light irradiation. Experimental results revealed that the weight percent of cadmium had a remarkable effect on the photodegradation efficiency. The NiO/Cd/g-C3N4 (0.1%) sample exhibited superior activity in the degradation reaction. The activity of this nanocomposite was about 4.5 and 3.25 fold higher than those of the pure g-C3N4 and NiO/g-C3N4 samples in the degradation of MB, respectively. The enhanced photocatalytic activity was attributed to the low energy gap, increased absorption capacity of the visible light, and efficient suppression of the recombination of photogenerated electron-hole pairs. A detailed photocatalytic mechanism over the nanocomposite of NiO/Cd/g-C3N4 (0.1%) was proposed with superoxide radical anion O2 as the main reactive species. The stability of the nanocomposite was confirmed after four consecutive runs as well.  相似文献   

20.
To increase the number of active sites and defects in TiO2 and promote rapid and efficient transfer of photogenerated charges, a g-C3N4@C-TiO2 composite photocatalyst was prepared via in situ deposition of g-C3N4 on a carbon-doped anatase TiO2 surface. The effects of carbon doping state and surface modification of g-C3N4 on the performance of g-C3N4@C-TiO2 composite photocatalysts were studied by X-ray diffraction, X-ray photoelectron spectroscopy, UV-visible diffuse-reflectance spectroscopy, transmission electron microscopy, electrochemical impedance spectroscopy, photoluminescence, and electron paramagnetic resonance. With increasing carbon doping content, the carbon doping state in TiO2 gradually changed from gap to substitution doping. Although the number of oxygen vacancies gradually increased, the degradation efficiency of g-C3N4@C-TiO2 for RhB (phenol) initially increased and subsequently decreased with increasing carbon content. The g-C3N4@10C-TiO2 sample exhibited the highest apparent reaction rate constant of 0.036 min?1 (0.039 min?1) for RhB (phenol) degradation, which was 150 (139), 6.4 (6.8), 2.3 (3), and 1.7 (2.1) times higher than that of pure TiO2, 10C-TiO2, g-C3N4, and g-C3N4@TiO2, respectively. g-C3N4 was grown in situ on the surface of C-TiO2 by surface carbon hybridization and bonding. The resultant novel g-C3N4@C-TiO2 photocatalyst exhibited direct Z-scheme heterojunctions with non-local impurity levels. The high photocatalytic activity can be attributed to the synergistic effects of the improved visible light response ability, higher photogenerated electron transfer efficiency, and redox ability arising from Z-type heterojunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号