首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 78 毫秒
1.
天山石炭纪火山岩系中含有富Nb岛弧玄武岩吗?   总被引:4,自引:0,他引:4       下载免费PDF全文
中国西北部天山石炭纪—早二叠世裂谷火山作用代表了一个新近被认可的大火成岩省。有人认为,在天山石炭纪火山岩系中发育有富Nb岛弧玄武岩、埃达克岩和高镁安山岩组合。然而,该岩石组合具有与典型富Nb岛弧玄武岩、埃达克岩和高镁安山岩不同的化学和同位素特点,表明其并非是岛弧岩石组合。这一推断的岛弧岩石组合实际上是大陆板内火山岩组合,由未遭受地壳混染、受到地壳轻微混染和遭受地壳强烈混染的大陆火山岩组成。  相似文献   

2.
颜代蓉  邓晓东  胡浩  李建威 《岩石学报》2012,28(10):3373-3388
阮家湾花岗闪长岩和犀牛山花岗闪长斑岩位于鄂东南矿集区东南缘,前者产有鄂东南地区最大的矽卡岩型钨-铜-钼矿床,而后者迄今仅发现有斑岩型铜矿化点.本文对阮家湾花岗闪长岩和犀牛山花岗闪长斑岩开展了系统的锆石U-Pb年代学、元素地球化学和Sr-Nd-Hf同位素组成的研究,以深入讨论这些岩体的岩石成因及其成矿和找矿意义.锆石U-Pb定年结果表明,阮家湾花岗闪长岩和犀牛山花岗闪长斑岩的侵位年龄分别为143±1Ma和147±1Ma( 1σ),是鄂东南地区最老的含钨-铜-钼矿化侵入岩.阮家湾花岗闪长岩和犀牛山花岗闪长斑岩均为高钾钙碱性岩体,富集Rb、Ba、Th和La等大离子亲石元素,亏损Nb、Ta和Zr等高场强元素.岩石具有Sr含量高(分别为681 × 10-6 ~874×10-6和575×10-6 ~687×10-6)、Y含量低(分别为12.0×10-6 ~ 17.4×10-6和9.7×10-6~14.0×10-6)、Sr/Y比值大(分别为39 ~ 61和47 ~ 62)、轻重稀土分馏强烈(Yb含量分别为0.90×10-6~1.49×10-6和0.62 × 10-6 ~1.01×10-6;La/Yb比值分别为42 ~ 54和48 ~ 60)等特点.全岩Sr-Nd同位素分析和锆石Hf同位素分析结果表明,阮家湾花岗闪长岩的(87Sr/86Sr)i为0.7062 ~0.7063,εNd(t)为-5.8 ~-6.2,εHf(t)为-12.0~ -6.8;犀牛山花岗闪长斑岩的(87Sr/86 Sr)i为~0.7065,εNd(t)为-5.6~ -6.5.元素和同位素地球化学特征表明,阮家湾花岗闪长岩和犀牛山花岗闪长斑岩是由富集地幔部分熔融形成的岩浆同化混染下地壳物质并发生分离结晶作用的产物.矿物组合及矿物化学组成表明,阮家湾钨铜钼矿床的含矿岩体具有更低的氧逸度和更多的地壳物质混染,而犀牛山花岗闪长斑岩则具有较高的氧逸度(以出现岩浆硬石膏为标志).另外,犀牛山岩体中挥发份的含量与鄂东南地区最大的斑岩-矽卡岩型铜矿——铜山口矿床的含矿岩体类似,表明有利于斑岩型铜矿床的形成.犀牛山岩体内部斑岩型铜矿点和铁帽发育,进一步说明犀牛山岩体具有较大的斑岩型铜矿床找矿潜力,在今后的找矿工作中应给予关注.  相似文献   

3.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed.  相似文献   

4.
Early Cretaceous arc volcanic rocks, diorite intrusions and an associated large porphyry deposit occur in the Cebu Island, Central Philippines. In this paper, we studied the diorite porphyries associated with Cu-Au mineralization in the Kansi region, where Early Cretaceous arc volcanic rocks are widely distributed. Zircon U-Pb age reveals that the diorites were formed at ca. 110 Ma, close to the formation age of Lutopan diorites in the famous Atlas porphyry Cu-Au deposit (109–101 Ma), and younger than those of the arc volcanics in this region (126–118 Ma). The Kansi diorites and Lutopan diorites are both calc-alkaline high-Mg adakites with high Sr/Y ratios. Their major elements define similar variation trends in Harker diagrams, suggesting that they were probably generated from a uniform source but experienced different degree of partial melting or fractional crystallization. The Kansi diorites are characterized by LREE enrichment, HREE depletion, no Eu negative anomaly, with enrichment of Pb, Sr, Zr and Hf and depletion of Nb, Ta, and Ti. They are probably generated by the partial melting of subducted oceanic crust, followed by a certain degree of mantle interaction and crustal contamination. The highly depleted Sr-Nd-Pb-Hf isotopes of the Kansi diorites are close to the Amami Plateau basalt and tonalite, indicating the dominance of a Pacific-type MORB in the source. The Cu-Au mineralization-related Kansi diorites are characterized by high oxygen fugacities more than ΔFMQ +2, indicating quite a good potential for porphyry Cu-Au mineralization in the region. Finally, in our tectonic model, the successive generation of arc volcanic rocks and adakites in the Cebu Island are responses to the subduction and rollback of the paleo-Pacific Plate to the proto-Philippine Sea Plate (PSP) in the Early Cretaceous.  相似文献   

5.
王居里  胡洋  王敏  王建其 《岩石学报》2019,35(2):523-540
布拉特矿化次火山岩出露于谢米斯台中部,岩性主要为英安斑岩和流纹斑岩。本文通过锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素等研究,探讨其形成的构造环境、成因及成矿意义。结果表明,英安斑岩形成年龄为434.9±2.3Ma,属高钾钙碱性-钾玄岩系列准铝质-强过铝质岩石;岩石稀土总量中等(∑REE=97.9×10~(-6)~107×10~(-6)),富集轻稀土且轻重稀土分异明显((La/Yb)_N=7.93~9.95),具较弱铕负异常(δEu=0.78~0.90),相对富集Rb、Th、U、K等元素,亏损Nb、Ta、P、Ti等元素;岩石具有低的(~(87)Sr/~(86)Sr)_i值(0.7036~0.7043)和正的ε_(Nd)(t)值(+2.64~+5.01),t_(DM1)(Nd)=750~930Ma。流纹斑岩形成年龄为423.2±0.9Ma,属高钾钙碱性-钾玄岩系列准铝质-强过铝质岩石;稀土总量中等(∑REE=65.3×10~(-6)~127×10~(-6)),富集轻稀土且轻重稀土分异明显((La/Yb)_N=6.82~8.24),具较强铕负异常(δEu=0.51~0.71),相对富集Rb、Th、U、K等元素,亏损Nb、Ta、P、Ti等元素;岩石具有低的(~(87)Sr/~(86)Sr)_i值(0.7022~0.7038)和正的ε_(Nd)(t)值(+2.86~+5.78),t_(DM1)(Nd)=680~940Ma;锆石ε_(Hf)(t)=+9.8~+14.9,t_(DM2)(Hf)=456~783Ma。综合研究表明,布拉特矿化英安斑岩和流纹斑岩是不同岩浆演化结晶的产物,二者都形成于活动大陆边缘弧环境,可能是新生下地壳部分熔融形成的花岗质岩浆与部分源自地幔楔的玄武质岩浆发生混合、向上运移、冷凝结晶的产物。较晚形成的流纹斑岩岩浆形成过程中新生下地壳部分熔融的比例有所降低,熔出的岩浆相对更偏酸性;谢米斯台地区以志留纪-早泥盆世火山岩、次火山岩和中酸性侵入体为代表的岩浆岩带为一个主体形成于早古生代的陆缘弧岩浆岩带,是形成和寻找斑岩型铜矿的有利地区。  相似文献   

6.
本文对苏尼特左旗北部沙尔塔拉地区原定早二叠世大石寨组火山岩进行了系统的岩相学、LA-ICP-MS锆石U-Pb定年、主微量元素和锆石Hf同位素研究。定年结果显示,该套地层中火山岩的形成时代可分为~3465Ma和3351Ma两期,其岩石组合分别为玄武安山岩-安山岩-英安岩-流纹岩和英安岩-流纹岩,其形成时代为早石炭世,而非前人认为的早二叠世。玄武安山岩具有高Al_2O_3( 17%),低MgO含量(243%~270%)和Cr、Co、Ni的特点,可能是高温低压和含少量水条件下母岩浆经历了橄榄石和辉石(早)以及斜长石(晚)等分离结晶作用的产物;相对富集轻稀土元素、大离子亲石元素(如Rb、Ba、Sr)以及Pb、Zr和Hf,亏损重稀土元素和Nb、Ta和Ti,具有较高的正ε_(Hf)(t)值(892~1379),同时存在大量434~490Ma的捕获锆石,表明早石炭世早期玄武安山岩的原始岩浆应起源于陆内伸展机制下受早期俯冲流体交代的亏损岩石圈地幔部分熔融,并经历了一定程度的地壳混染。英安岩和流纹岩的主微量元素特征(富硅、铝,贫铁、镁,富集LREEs和LILEs,亏损HREEs和HSFEs等)和锆石Hf同位素组成(ε_(Hf)(t)值分别为797~1214和835~1471,t_(DM2)分别为838~577Ma和812~407Ma),暗示它们的原始岩浆主体来源于新元古代末期和早古生代新增生的地壳部分熔融,同时,335Ma英安岩和流纹岩显示出高温(平均值为876℃)和A型花岗岩的特征,表明它们形成于陆壳伸展环境。安山岩的地球化学特征显示其岩浆可能是上述中基性和酸性岩浆混合的产物。另外,研究区石炭纪以新增生地壳的部分熔融为主,而且酸性火山岩锆石Hft_(DM2)整体随岩浆活动时代变新而变年轻。综上所述,早石炭世早期玄武安山岩表现出板内成因特点,安山岩具有岩浆混合成因,玄武安山岩与同时代英安岩-流纹岩共同构成了双峰式火山岩组合,从而表明研究区早石炭世早期已经处于陆内伸展环境;而早石炭世中期酸性火山岩的形成也进一步揭示了伸展作用的持续进行。结合前人沉积、变质作用等方面的研究成果,本文认为研究区石炭纪所记录的拉张环境可能与古亚洲洋在泥盆纪闭合后的伸展环境有关。  相似文献   

7.
The Central Asian Orogenic Belt (CAOB) is renowned for massive generation of juvenile crust in the Phanerozoic. Mongolia is the heartland of the CAOB and it has been subject to numerous investigations, particularly in metallogenesis and tectonic evolution. We present new petrographic, geochemical and Sr–Nd isotopic analyses on Phanerozoic granitoids emplaced in west-central Mongolia. The data are used to delineate their source characteristics and to discuss implications for the Phanerozoic crustal growth in Central Asia. Our samples come from a transect from Bayanhongor to Ulaan Baatar, including three tectonic units: the Baydrag cratonic block (late Archean to middle Proterozoic), the Eo-Cambrian Bayanhongor ophiolite complex and the Hangay–Hentey Basin of controversial origin. The intrusive granitoids have ages ranging from ca. 540 to 120 Ma. The majority of the samples are slightly peraluminous and can be classified as granite (s.s.), including monzogranite, syenogranite and alkali feldspar granite. Most of the rocks have initial 87Sr/86Sr ratios between 0.705 and 0.707. Late Paleozoic to Mesozoic granitoids (≤250 Ma) are characterized by near-zero Nd(T) values (0 to −2), whereas older granitoids show lower Nd(T) values (−1.5 to −7). The data confirm the earlier observation of Kovalenko et al. [Geochemistry International 34 (1996) 628] who showed that granitoids emplaced outside of the Pre-Riphean basement rocks are characterized by juvenile positive Nd(T) values, whereas those within the Pre-Riphean domain and the Baydrag cratonic block, as for the present case, show a significant effect of ‘contamination’ by Precambrian basement rocks. Nevertheless, mass balance calculation suggests that the granitoids were derived from sources composed of at least 80% juvenile mantle-derived component. Despite our small set of new data, the present study reinforces the general scenario of massive juvenile crust production in the CAOB with limited influence of old microcontinents in the genesis of Phanerozoic granitoids.  相似文献   

8.
The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt (YPCB), eastern Tibet. The Cu-Au mineralization mainly occurs as chalcopyrite in breccia, within the plate-like carbonate interlayer, being closely related to chloritization (e.g., chlorite, magnetite and epidote) and skarnization (e.g., diopside, tremolite and garnet). The ore-related quartz syenite porphyry (QSP) and granodiorite porphyry (GP) were emplaced at 40.1 ± 0.2 Ma and 39.9 ± 0.3 Ma, respectively. The QSP of Mamupu is an alkaline-rich intrusion, relatively enriched in LREE, LILE, depleted in HFSE, with no significant negative Eu and Ce anomalies, slightly high (87Sr/86Sr)i, low εNd(t), uniform (206Pb/204Pb)i and εHf(t) values, which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust. The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB. High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits. The QSP has similar high magmatic oxidation states and water content to the Yulong deposit, which indicates that the Mamupu has a high prospecting potential. Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions, as well as differences in the surrounding rocks.  相似文献   

9.
10.
The Zaozigou gold deposit lies in the West Qinling orogenic belt, Gansu Province, China. It is one of the largest gold deposits, and the orebodies are hosted in fine‐grained slates intercalated with limestone of the Middle‐Triassic Gulangdi Formation and varied dykes. The gold orebodies are strictly controlled by the NE‐, NW‐, and SN‐trending tensional and shearing faults with high dipping angle. The mineralogy and geochemistry of pyrite and arsenopyrite are measured by electron microprobe. Pyrite has up to 0.12 wt.% Au, and arsenopyrite contains up to 0.17 wt.% Au. The antithetic correlation between S and As indicates the substitution of As for S in pyrite, and arsenic occurs in anionic As1? state in the pyrite structure under the reduced conditions. Pyrite has relatively high Co (~364–2248 ppm) but relatively low Ni (~109–497 ppm) contents, with Co/Ni ratios ranging from ~1.63 to 10.50, indicating that the deposit originated from a volcanogenic fluid and remobilized by hydrothermal fluid. Au in arsenopyrite occurs as cationic Au in solid solution, whereas Au in pyrite is in solid solution and metal nanoparticles (Au0). The texture characteristics and trace element geochemistry among cores, transition zones, and rims of pyrites demonstrate that there are at least four pulses of fluid participating in the generation of pyrite in the deposit. The calculated formation temperatures of the Zaozigou deposit vary from 148°C to 304°C, with an average temperature of 213°C based on Au contents in pyrite. The Pb isotopic compositions of pyrite samples suggest that the metallogenic materials of the Zaozigou deposit were derived from the mantle and upper crust. All the characteristics above lead us to draw the conclusion that the Zaozigou gold deposit is classified as an epithermal deposit.  相似文献   

11.
以位于西准噶尔的阔尔真阔腊、布尔克斯岱、哈图、包古图金矿;东准噶尔的科克萨依、野马泉金矿;东天山的康古尔,石英滩,红石金矿为研究重点,着重探讨了S、Pb、C同位素在本区特定构造地质条件下对金成矿作用的示踪。结果表明。主成矿期矿化剂元素硫来源于深部,有少量地壳物质混染,金属元素铅主要来源于地幔及下地壳,少量浅部铅混染。反映了本区金的来源以深源为主的特征,各类金矿矿化剂元素碳为无机碳与有机碳不同程度的混合,表明地层有机质不同程度地参与了金的运移与卸载成矿,这是本区金成矿的重要特色。本区年轻的基底、深大断裂、火山活动及地层中有机质的参与等地质条件成就了本区不同类型金矿床的成矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号