首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   

2.
3.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

4.
There is increasing interest in the use of plant growth-promoting rhizobacteria (PGPR) as environmental-friendly and healthy biofertilizers. Strawberries (Fragraria x ananassa) are mainly consumed fresh and hence any PGPRs used for biofertilization must be safe for humans, which is the case for members of the genus Rhizobium. In this study, the effects of inoculation of strawberry plants with Rhizobium sp. strain PEPV16, which belongs to the phylogenetic group of R. leguminosarum, and whose plant growth promotion ability has been reported previously for lettuce (Lactuca sativa) and carrots (Daucus carota), was examined. The results demonstrated that PEPV16 promotes strawberry growth through significant increases in the number of stolons, flowers and fruits as compared with uninoculated controls. Compared to uninoculated controls, the fruits of the inoculated plants had higher concentrations of Fe, Zn, Mn and Mo, and they also had higher concentrations of organic acids, such as citric and malic acid, and lower amounts of ascorbic acid than fruits. Although decreases in ascorbic acid have previously been described after the inoculation of strawberry with strains from different PGPR genera, this is the first study to report increases in organic acids after PGPR inoculation.  相似文献   

5.
6.
7.
Heavy metal contamination of agricultural soils has increased along with industrialization. Mercury is a toxic heavy metal and a widespread pollutant in the ecosystem. Mercury-tolerant and plant growth-promoting rhizobacteria (PGPR) HG 1, HG 2, and HG 3 were isolated from the rhizosphere of plants growing in a mercury-contaminated site. These isolates were able to grow in the presence of mercury ranging from 10 to 200 µM in minimal medium and 25 to 500 µM in LB medium. The strains were characterized by morphological, biochemical, and plant growth-promoting traits. In the present study, these PGPR strains were analyzed for their involvement in metal stress tolerance in Triticum aestivum (wheat). Two bacterial strains, namely, Enterobacter ludwigii (HG 2) and Klebsiella pneumoniae (HG 3), showed better growth promotion of T. aestivum seedlings under metal stress. Different growth parameters like, water content and biochemical properties were analyzed in the PGPR-inoculated wheat plants under 75 µM HgCl2. Shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were significantly higher in inoculated plants compared to uninoculated plants under stress condition. Proline content, electrolyte leakage, and malondialdehyde content (shoots and roots) were significantly lower in inoculated plants with respect to uninoculated plants under mercury stress. Therefore, it could be assumed that all these parameters collectively improve plant growth under mercury stress conditions in the presence of PGPR. Hence, these PGPRs can serve as promising candidates for increasing plant growth and also have immense potential for bioremediation of mercury-contaminated soils.  相似文献   

8.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

9.
Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of cucumber plants worldwide. In the present study, we use plant growth-promoting rhizobacteria (PGPR) to control this virus effectively. Stenotrophomonas maltophilia HW2 was isolated from healthy cucumber root, exhibited a good biocontrol efficacy against CGMMV. Here, it is documented that 20 d after virus inoculation, the biocontrol efficacy of HW2 reached 52.61%. HW2 can effectively colonize in cucumber rhizosphere, and also promoted cucumber plants growth. We also examined the effect of HW2 on viral replication and its mechanism. Compared with the control, HW2 pre-treated plants could delay virus replication for more than 3 d and inhibit viral protein genes (CP, MP, Rep) expression in the cucumber leaf. The expression of antioxidant enzyme genes (SOD and CAT) and defense-related genes (PR1 and PR5) were quickly induced by HW2. These results suggest that HW2 induced plant defense responses to CGMMV by increasing the expression of defense response genes. We report for the first time that Stenotrophomonas maltophilia improved cucumber resistance against CGMMV, which highlights the applying of PGPR on controlling of virus diseases.  相似文献   

10.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

11.
The effects of treatment with nitric oxide donor sodium nitroprusside (SNP, 0.5 mM) on salt tolerance of wild type (Col–0) Arabidopsis thaliana plants and Arabidopsis thaliana plants transformed with the bacterial salicylate hydroxylase gene (NahG) were compared. Basic salt tolerance level (200 mM NaCl) was higher in NahG transformants. Under salt stress conditions, these plants showed higher activity levels for antioxidant enzymes as well as higher content of sugars and anthocyanins. The treatment with NO donor induced salt tolerance in the plants of both genotypes, which could be observed as less strong growth inhibition, reduced oxidative damage, and preservation of chlorophyll pool in leaves. After the exposure to salt stress, the activity of both superoxide dismutase and guaiacol peroxidase was higher in SNP-treated wild type plants and NahG transformants than in the nontreated plants. After the imposition of salt stress, proline content in leaves of the wild type plants treated with the nitric oxide donor was lower than in the leaves of the nontreated plants. In contrast, SNP treatment of NahG transformants led to a significant increase in the proline content in leaves under the salt stress conditions. Conclusions have been made that wild type Col-0 plants and NahG transformants differ in how their systems of protection against salt stress are activated and that nitric oxideinduced mobilization of protection systems in A. thaliana may not require the presence of salicylate.  相似文献   

12.
Salt stress inhibited the growth of both tasg1 and wild-type (WT) wheat seedlings, but the inhibition in tasg1 plants was relatively weaker than that of WT. Compared to the WT, the chlorophyll content, thylakoid membrane polypeptides, Hill reaction activity, actual photochemical efficiency of PSII (ΦPSII), and Mg2+- and Ca2+-ATPase activities were higher in tasg1 under salt stress. At the same time, the photosynthetic activity of the tasg1 was significantly higher than that of WT. In addition, tasg1 plants displayed relatively less accumulation of reactive oxygen species and oxidative damage accompanied by higher activity of some antioxidant enzymes, and the up-regulation of antioxidant genes further demonstrated the improvement of antioxidant activity in tasg1 under salt stress. Furthermore, tasg1 plants also showed relatively weaker Na+ fluorescence and lower Na+ content, but relatively higher content of K+ in their roots and shoots, and then, the roots of tasg1 plants enhanced net outward Na+ flux and a correspondingly increased net inward K+ flux during salt stress. This might be associated with the relatively higher activity of H+-ATPase in tasg1 plants. These results suggest that the improved antioxidant competence and Na+/K+ ion homeostasis play an important role in the enhanced salinity tolerance of tasg1 plants.  相似文献   

13.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

14.
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.  相似文献   

15.
Although amelioration of drought stress in plants by plant growth promoting rhizobacteria (PGPR) is a well reported phenomenon, the molecular mechanisms governing it are not well understood. We have investigated the role of a drought ameliorating PGPR strain, Pseudomonas putida GAP-P45 on the regulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions. Indeed, we found that Pseudomonas putida GAP-P45 alleviates the effects of water-stress in A. thaliana by drastic changes in proline metabolic gene expression profile at different time points post stress induction. Quantitative real-time expression analysis of proline metabolic genes in inoculated plants under water-stressed conditions showed a delayed but prolonged up-regulation of the expression of genes involved in proline biosynthesis, i.e., ornithine-Δ-aminotransferase (OAT), Δ 1 -pyrroline-5-carboxylate synthetase1 (P5CS1), Δ 1 -pyrroline-5-carboxylate reductase (P5CR), as well as proline catabolism, i.e., proline dehydrogenase1 (PDH1) and Δ 1 -pyrroline-5-carboxylate dehydrogenase (P5CDH). These observations were positively correlated with morpho-physiological evidences of water-stress mitigation in the plants inoculated with Pseudomonas putida GAP-P45 that showed better growth, increased fresh weight, enhanced plant water content, reduction in primary root length, enhanced chlorophyll content in leaves, and increased accumulation of endogenous proline. Our observations point towards PGPR-mediated enhanced proline turnover rate in A. thaliana under dehydration conditions.  相似文献   

16.
17.
Durum wheat (Triticum turgidum ssp. durum) is one of the main species of cultivated wheat. In arid and semi-arid areas, salinity stress reduces durum wheat productivity. This study used 26 durum wheat accessions from semi-arid regions in Tunisia to analyze plant tolerance to salt stress. Salt stress was experimentally applied by regularly submerging pots in NaCl solution. The salt tolerance trait index (STTI) and salt tolerance index (STI) of various growth parameters were used as criteria to select for salt tolerance. Analysis of genetic relationships was carried out to determine the genetic distance between durum wheat accessions. Based on simple sequence repeats analysis, a molecular marker for salt stress resistance in durum wheat was developed. Salt-treated plants had reduced morphological traits compared to control plants. Most STTIs in all genotypes were below 100 %. Based on STI, 8 accessions were found to be salt-resistant, 16 were salt-moderate, two were salt-susceptible. Analysis of the genetic relationships among 28 Tunisian durum wheat accessions revealed that landraces of the same nominal type are closely related. Of the 94 SSR primers investigated, three were selected and used to design sequence characterized amplified region (SCAR) primers. One SCAR primer pair, KUCMB_Xgwm403_2, produced a 207 bp band that was present in salt-resistant durum wheat lines but absent in salt-susceptible lines. The results suggest that KUCMB_Xgwm403_2 could be a potential genetic tag for salt-tolerant durum wheats.  相似文献   

18.
Histidine triad nucleotide-binding protein 1 (HINT1) is highly conserved in many species and plays important roles in various biological processes. However, little is known about the responses of HINT1 to abiotic stress in plants. Salt and drought stress are major limiting factors for plant growth and development, and their negative effects on crop productivity may threaten the world’s food supply. Previously, we identified a maize gene, Zm-HINT1, which encodes a 138-amino-acid protein containing conserved domains including the HIT motif, helical regions, and β-strands. Here, we demonstrate that overexpression of Zm-HINT1 in Arabidopsis confers salt and drought tolerance to plants. Zm-HINT1 significantly regulated Na+ and K+ accumulation in plants under salt stress. The improve tolerance characteristics of Arabidopsis plants that were overexpressing Zm-HINT1 led to increased survival rates after salt and drought treatments. Compared with control plants, those plants that overexpressed Zm-HINT1 showed increased proline content and superoxide dismutase activity, as well as lower malondialdehyde and hydrogen peroxide accumulation under salt and drought treatments. The expression patterns of stress-responsive genes in Arabidopsis plants that overexpressed Zm-HINT1 significantly differed from those in control lines. Taken together, these results suggest that Zm-HINT1 has potential applications in breeding and genetic engineering strategies that are designed to produce new crop varieties with improved salt and drought tolerance.  相似文献   

19.
20.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号