首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unsteady incompressible Navier–Stokes solver that uses a dual time stepping method combined with spatially high‐order‐accurate finite differences, is developed for large eddy simulation (LES) of turbulent flows. The present solver uses a primitive variable formulation that is based on the artificial compressibility method and various convergence–acceleration techniques are incorporated to efficiently simulate unsteady flows. A localized dynamic subgrid model, which is formulated using the subgrid kinetic energy, is employed for subgrid turbulence modeling. To evaluate the accuracy and the efficiency of the new solver, a posteriori tests for various turbulent flows are carried out and the resulting turbulence statistics are compared with existing experimental and direct numerical simulation (DNS) data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The interaction between the hydrodynamic forces of a flow field and the elastic forces of adjacent deformable boundaries is described by elastohydrodynamics, a coupled fluid–elastic membrane problem. Direct numerical solution of the unsteady, highly non-linear equations requires that the dynamic evolution of both the flow field and the domain shape be determined as part of the solution, since neither is known a priori. This paper describes a numerical algorithm based on the deformable spatial domain space–time (DSD/ST) finite element method for the unsteady motion of an incompressible, viscous fluid with elastic membrane interaction. The unsteady Navier–Stoke and elastic membrane equations are solved separately using an iterative procedure by the GMRES technique with an incomplete lower-upper (ILU) decomposition at every time instant. One-dimensional, two-dimensional and deformable domain model problems are used to demonstrate the capabilities and accuracy of the present algorithm. Both steady state and transient problems are studied. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
A class of higher order compact (HOC) schemes has been developed with weighted time discretization for the two‐dimensional unsteady convection–diffusion equation with variable convection coefficients. The schemes are second or lower order accurate in time depending on the choice of the weighted average parameter μ and fourth order accurate in space. For 0.5?μ?1, the schemes are unconditionally stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than unity. They efficiently capture both transient and steady solutions of linear and nonlinear convection–diffusion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear convection–diffusion problem and three flows of varying complexities governed by the two‐dimensional incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical and established numerical results. Overall the schemes are found to be robust, efficient and accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The non‐reflective boundary conditions (NRBC) for Navier–Stokes equations originally suggested by Poinsot and Lele (J. Comput. Phys. 1992; 101 :104–129) in Cartesian coordinates are extended to generalized coordinates. The characteristic form Navier–Stokes equations in conservative variables are given. In this characteristic‐based method, the NRBC is implicitly coupled with the Navier–Stokes flow solver and are solved simultaneously with the flow solver. The calculations are conducted for a subsonic vortex propagating flow and the steady and unsteady transonic inlet‐diffuser flows. The results indicate that the present method is accurate and robust, and the NRBC are essential for unsteady flow calculations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A finite element model to solve the incompressible Navier–Stokes equations based on the stabilization with orthogonal subscales, a predictor–corrector scheme to segregate the pressure and a nodal based implementation is presented in this paper. The stabilization consists of adding a least‐squares form of the component orthogonal to the finite element space of the convective and pressure gradient terms, which allows to deal with convection‐dominated flows and to use equal velocity–pressure interpolation. The pressure segregation is inspired in fractional step schemes, although the converged solution corresponds to that of a monolithic time integration. Finally, the nodal‐based implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements and thus making the calculations much faster. Some issues related to this implementation for fractional step and our predictor–corrector scheme, which is the main contribution of this paper, are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A new numerical method is developed to efficiently solve the unsteady incompressible Navier–Stokes equations with second-order accuracy in time and space. In contrast to the SIMPLE algorithms, the present formulation directly solves the discrete x- and y-momentum equations in a coupled form. It is found that the present implicit formulation retrieves some cross convection terms overlooked by the conventional iterative methods, which contribute to accuracy and fast convergence. The finite volume method is applied on the fully staggered grid to solve the vector-form momentum equations. The preconditioned conjugate gradient squared method (PCGS) has proved very efficient in solving the associate linearized large, sparse block-matrix system. Comparison with the SIMPLE algorithm has indicated that the present momentum coupling method is fast and robust in solving unsteady as well as steady viscous flow problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
We propose two timestep selection algorithms, based on feedback control theory, for finite element simulation of steady state and transient 2D viscous flow and coupled reaction–convection–diffusion processes. To illustrate performance of the schemes in practice, we solve Rayleigh–Benard–Marangoni flows, flow across a backward‐facing step, unsteady flow around a circular cylinder and chemical reaction systems. Numerical experiments confirm that the feedback controllers produce in some cases a very smooth stepsize variation, suggesting that robust control algorithms are possible. These experiments also show that parameter selection can improve timesteps when co‐ordinated with the convergence control of non‐linear iterations. Further, computational cost of the selection procedures is negligible, since they involve only storing a few extra vectors, computation of norms and evaluation of kinetic energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Developing Couette–Poiseuille flows at Re=5000 are studied using a low Reynolds number k–ϵ two‐equation model and a finite element formulation. Mesh‐independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least‐squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k–ϵ model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The unsteady compressible flow equations are solved using a stabilized finite‐element formulation with C0 elements. In 2D, the performance of three‐noded linear and six‐noded quadratic triangular elements is compared. In 3D, the relative performance is evaluated for 6‐noded linear and 18‐noded quadratic wedge elements. Results are compared for the solutions to Euler, laminar, and turbulent flows at different Mach numbers for several flow problems. The finite‐element meshes considered for comparison have same location of nodes for the linear and quadratic interpolations. For the turbulent flow, the Spalart–Allmaras model is used for closure. It is found that the quadratic elements yield better performance than the linear elements. This is attributed to accurate representation of the stabilization terms that involve second‐order derivatives in the formulation. When these terms are dropped from the formulation with quadratic interpolation, the numerical results are similar to those obtained with linear interpolation. The absence of these terms result in added numerical diffusion that seems to give the effect of a relatively reduced Reynolds number. For the same location of nodes, the computations with the linear triangular and wedge elements are approximately 20% and 100% faster than those with quadratic triangular and wedge elements, respectively. However, if the same quadrature rule for numerical integration is used for both interpolations, the computations with quadratic elements are approximately 20% and 45% faster in 2D and 3D, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
We recently proposed an improved (9,5) higher order compact (HOC) scheme for the unsteady two‐dimensional (2‐D) convection–diffusion equations. Because of using only five points at the current time level in the discretization procedure, the scheme was seen to be computationally more efficient than its predecessors. It was also seen to capture very accurately the solution of the unsteady 2‐D Navier–Stokes (N–S) equations for incompressible viscous flows in the stream function–vorticity (ψ – ω) formulation. In this paper, we extend the scope of the scheme for solving the unsteady incompressible N–S equations based on primitive variable formulation on a collocated grid. The parabolic momentum equations are solved for the velocity field by a time‐marching strategy and the pressure is obtained by discretizing the elliptic pressure Poisson equation by the steady‐state form of the (9,5) scheme with the Neumann boundary conditions. In particular, for pressure, we adopt a strategy on the collocated grid in conjunction with ideas borrowed from the staggered grid approach in finite volume. We first apply this extension to a problem having analytical solution and then to the famous lid‐driven square cavity problem. We also apply our formulation to the backward‐facing step problem to see how the method performs for external flow problems. The results are presented and are compared with established numerical results. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this paper, we consider an adaptive meshing scheme for solution of the steady incompressible Navier–Stokes equations by finite element discretization. The mesh refinement and optimization are performed based on an algorithm that combines the so‐called conforming centroidal Voronoi Delaunay triangulations (CfCVDTs) and residual‐type local a posteriori error estimators. Numerical experiments in the two‐dimensional space for various examples are presented with quadratic finite elements used for the velocity field and linear finite elements for the pressure. The results show that our meshing scheme can equally distribute the errors over all elements in some optimal way and keep the triangles very well shaped as well at all levels of refinement. In addition, the convergence rates achieved are close to the best obtainable. Extension of this approach to three‐dimensional cases is also discussed and the main challenge is the efficient implementation of three‐dimensional CfCVDT generation that is still under development. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A Cartesian grid method using immersed boundary technique to simulate the impact of body in fluid has become an important research topic in computational fluid dynamics because of its simplification, automation of grid generation, and accuracy of results. In the frame of Cartesian grid, one often uses finite volume method with second order accuracy or finite difference method. In this paper, an h‐adaptive Runge–Kutta discontinuous Galerkin (RKDG) method on Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is developed. A ghost cell immersed boundary treatment with the modification of normal velocity is presented. The method is validated versus well documented test problems involving both steady and unsteady compressible flows through complex bodies over a wide range of Mach numbers. The numerical results show that the present boundary treatment to some extent reduces the error of entropy and demonstrate the efficiency, robustness, and versatility of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A wetting–drying condition (WDC) for unsteady shallow water flow in two dimensions leading to zero numerical error in mass conservation is presented in this work. Some applications are shown which demonstrate the effectiveness of the WDC in flood propagation and dam break flows over real geometries. The WDC has been incorporated into a cell centred finite volume method based on Roe's approximate Riemann solver across the edges of both structured and unstructured meshes. Previous wetting–drying condition based on steady‐state conditions lead to numerical errors in unsteady cases over configurations with strong variations on bed slope. A modification of the wetting–drying condition including the normal velocity to the cell edge enables to achieve zero numerical errors. The complete numerical technique is described in this work including source terms discretization as a complete and efficient 2D river flow simulation tool. Comparisons of experimental and numerical results are shown for some of the applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
We develop in this paper a discretization for the convection term in variable density unstationary Navier–Stokes equations, which applies to low‐order non‐conforming finite element approximations (the so‐called Crouzeix–Raviart or Rannacher–Turek elements). This discretization is built by a finite volume technique based on a dual mesh. It is shown to enjoy an L2 stability property, which may be seen as a discrete counterpart of the kinetic energy conservation identity. In addition, numerical experiments confirm the robustness and the accuracy of this approximation; in particular, in L2 norm, second‐order space convergence for the velocity and first‐order space convergence for the pressure are observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The incompressible flow around bluff bodies (a square cylinder and a cube) is investigated numerically using turbulence models. A non‐linear kε model, which can take into account the anisotropy of turbulence with less CPU time and computer memory then RSM or LES, is adopted as a turbulence model. In tuning of the model coefficients of the non‐linear terms are adjusted through the examination of previous experimental studies in simple shear flows. For the tuning of the coefficient in the eddy viscosity (=Cμ), the realizability constraints are derived in three types of basic 2D flow patterns, namely, a simple shear flow, flow around a saddle and a focal point. Cμ is then determined as a function of the strain and rotation parameters to satisfy the realizability. The turbulence model is first applied to a 2D flow around a square cylinder and the model performance for unsteady flows is examined focussing on the period and the amplitude of the flow oscillation induced by Karman vortex shedding. The applicability of the model to 3D flows is examined through the computation of the flow around a surface‐mounted cubic obstacle. The numerical results show that the present model performs satisfactorily to reproduce complex turbulent flows around bluff bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号