首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于UC3875控制的移相全桥PWMDC—DC变换器   总被引:1,自引:0,他引:1  
针对传统的全桥移相式零电压零电流开关(FB—PS—ZVZCS)PWMDC—DC变换器在实现滞后桥臂开关管零电流开关(ZCS)的过程中,存在着辅助谐振电路附加损耗较大、软开关实现方式复杂以及功率开关管电压和电流应力高等缺点,提出了一种通过辅助无源钳位网络来实现软开关的全桥ZVZCSPWMDC—DC变换器。采用UC3875作为控制芯片,设计了变换器控制系统。通过一台1kW,25kHz的样机验证了这种软开关变换器相关理论的正确性。  相似文献   

2.
一种零电压开关双向DC/DC变换器   总被引:2,自引:0,他引:2  
提出了一种新型零电压开关隔离式的双向DC/DC变换器,变换器由两个非对称半桥组成,功率传输由相移脉宽调制方式控制,不需要任何辅助开关或无源谐振网络,变换器就可在双向变换工作中实现零压开关,谱换器有快的动态响应,介绍和分析了变换器的工作原理,并给出了实验结果。  相似文献   

3.
介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相ZVS-PWM DC/DC变换器。在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台48V/6V的DC/DC变换器。  相似文献   

4.
与传统的Buck电路相比,基于H桥并联的DC/DC变换器可以实现电压的双极性输出和故障时的冗余控制,非常适合用于大功率电动机正反转控制的场合。分析了并联H桥型DC/DC变换器的结构组成和双脉宽调制(PWM)模式。为了降低双脉宽调制下H桥型DC/DC变换器的开通和关断损耗,对无源软开关技术进行了分析,重点探讨了RCD缓冲电路和最小应力缓冲电路之间的性能差异,指出最小应力软开关技术可以获得更好的软开关性能,并就将其用于双脉宽调制下的并联H桥DC/DC变换器进行了仿真研究。仿真结果表明:最小应力软开关技术用于双脉宽调制下并联H桥DC/DC变换器时,可以实现开关管的零电压开通和零电流关断。  相似文献   

5.
一种新型双向软开关DC/DC变换器及其软开关条件   总被引:1,自引:0,他引:1  
提出了一种新型的隔离型双向软开关DC/DC变换器。变换器中的开关元件能够在全负载范围内实现软开关并且二极管实现零电流关断。上述措施有效地减少了开关损耗,电磁应力和电磁干扰。在简要介绍变换器工作原理的基础上,本文着重分析了电压、电流的变化规律,特别是推导出各开关元件实现软开关的条件及其数学表达式,并得到了实现软开关的通用条件。试验结果证明根据该通用条件设计的实验样机能够在大负载范围内实现软开关。  相似文献   

6.
针对现有的零电压软开关DC/DC变换器存在环流损耗大、占空比丢失严重、软开关范围窄和高频二极管寄生振荡严重等问题。设计了一种采用有限双极性PWM控制的零电压零电流软开关变换器,可在宽输入和宽负载范围内实现超前管零电流开通、零电压关断,滞后管零电流开关。采用RCD缓冲电路,有效抑制了高频整流二极管寄生振荡。相对于传统的零电压软开关变换器,具有环流损耗低、占空比丢失少和软开关范围宽等优点。  相似文献   

7.
介绍了DC/DC变换器的种类,讨论了软开关的工作原理和零电压开关及零电流开关的实现方式。并对BUCK变换器的零电流准谐振电路和Boost变换器的零电压准谐电流进行仿真分析。  相似文献   

8.
PWM加相移控制的双向DC/DC变换器   总被引:4,自引:13,他引:4  
该文提出了一种PWM加相移控制的双向DC/DC变换器。该变换器结合了PWM和相移这两种控制技术优点,不但可以减小变换器的电流应力和通态损耗,而且可以拓宽零电压开关的范围。该文详细地介绍和分析了变换器的工作原理,给出零电压开关的条件,最后给出了实验结果。  相似文献   

9.
改进型具有电压钳位的全桥ZVZCS PWM DC/DC变换器   总被引:1,自引:0,他引:1  
提出了一种改进型的具有有源钳位的全桥零电压零电流开关PWM DC/DC变换器.该变换器可以较好地实现超前桥臂开关管的零电压开关,以及滞后桥臂开关管的零电流开关.相对于传统的全桥零电压零电流DC/DC变换器,这种具有有源电压钳位的变换器可以减小由于谐振电路引起的变压器二次侧的振荡问题.它具有辅助电路简单、开关损耗低、导通损耗低和实现能量缓冲吸收等优点.详细分析了变换器的工作原理和特点,并通过一台1kW,100kHz的样机进行了验证.  相似文献   

10.
随着DC/DC变换器对功率密度提出了更高的要求,IGBT代替MOSFET成为主要的功率开关器件,ZVS DC/DC全桥变换器的缺点日益显现出来。ZVZCS DC/DC全桥变换器减轻了ZVS变换器固有的环流问题,解决了IGBT电流拖尾问题,成为目前研究的热点问题。重点简述了该类变换器的形成,原理以及发展,并介绍了几种常见的拓扑,分析了它们的优缺点。  相似文献   

11.
A high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter with ripple‐free input current is presented. In the presented converter, the ripple‐free boost cell provides ripple‐free input current and zero‐voltage switching of power switches. The resonant flyback cell provides zero‐voltage switching of power switches and zero‐current switching of the output diode. Also, it has a simple output stage. The proposed converter achieves high efficiency because of the reduction of the switching losses of the power switches and the output diode. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed and its experimental results are presented for validation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
综述了几种新型的零电压(ZVS)DC/DC变换器,并分析了变换器的优缺点,研究了一种新型MOSFET作为开关器件的三电平ZVS变换器,并分析了这种变换器一个周期的工作状态。该变换器用耦合电感代替常规电感,耦合电感通过变压器反射到原边,使变换器在零状态时的环流减小到零,实现了外管零电压开通,内管零电流关断。由于不存在一次侧环流,减小了通态损耗。  相似文献   

13.
张雷 《电气开关》2007,45(5):21-23,48
介绍了几种新型零电压(ZVS)DC/DC变换器,分析了它们的优缺点,研究了一种新型MOSFET作为开关器件的三电平ZVS变换器,并分析了这种变换器一个周期的工作状态.该变换器用耦合电感代替常规电感,耦合电感通过变压器反射到原边,使变换器在零状态时的环流减小到零,实现了外管零电压开通,内管零电流关断.由于不存在一次侧环流,减小了通态损耗.  相似文献   

14.
电机驱动用新型谐振直流环节电压源逆变器   总被引:2,自引:1,他引:1  
为了实现电机控制系统的高功率密度和高性能运行,必须提高逆变器的工作频率以提高功率变换器的效率和增强性能。然而,较高的工作频率会引起严重的电磁干扰和开关损耗从而导致系统整体效率降低。软开关技术被认为是解决上述问题的有效方法,结合软开关技术的优点和脉宽调制(pulse width modulation, PWM)控制的特点,提出了一种新的用于电机驱动系统的谐振直流环节软开关电压源逆变器,通过在传统硬开关逆变器的直流环节添加辅助谐振单元,实现了逆变桥开关器件的PWM软开关动作,同时,辅助谐振单元的开关也为软开关操作。文中阐述了该软开关逆变器拓扑的动作时序和动作模式,并对软开关动作时序的瞬态过渡过程进行了数学分析。对提出的新型软开关逆变器驱动无刷直流电机进行了仿真和实验研究,结果验证了电路结构和理论分析的正确性与可行性。  相似文献   

15.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
新型ZVZCT PWM直流变换器族的研究   总被引:2,自引:0,他引:2  
提出了一种新型零电压零电流转换 (ZVZCT)软开关单元 ,并基于该开关单元 ,构造了BuckZVZCTPWM变换器和BoostZVZCTPWM变换器 ,形成新型ZVZCTPWM直流变换器族。详细分析了BuckZVZCTPWM变换器的工作原理 ,主开关管实现了零电压零电流开关 ,辅助开关管实现了零电流开通、零电压零电流关断 ,续流二极管实现了零电压零电流关断、零电压开通。该软开关单元不但适合于少子器件 ,而且适合于多子器件 ,同时保持PWM控制的特点。仿真分析和实验结果完全验证了理论分析的正确性  相似文献   

17.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

18.
A soft‐switching high step‐up DC‐DC converter with a single magnetic component is presented in this paper. The proposed converter can provide high voltage gain with a relatively low turn ratio of a transformer. Voltage doubler structure is selected for the output stage. Due to this structure, the voltage gain can be increased, and the voltage stresses of output diodes are clamped as the output voltage. Moreover, the output diode currents are controlled by a leakage inductance of a transformer, and the reverse‐recovery loss of the output diodes is significantly reduced. Two power switches in the proposed converter can operate with soft‐switching due to the reflected secondary current. The voltages across the power switches are confined to the clamping capacitor voltage. Steady‐state analysis, simulation, and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
为了提高开关变换器的效率和增强性能,提出了一种新的谐振直流环节软开关电压源逆变器,通过在传统硬开关逆变器的直流环节添加辅助谐振单元,使直流环节电压周期性出现零电压凹槽,实现逆变桥开关器件在零电压条件下的切换,减小了开关损耗和二极管的反向恢复损耗。同时,辅助谐振单元的开关也为零电流或零电压条件下的软开关操作。详细阐述了该软开关逆变器拓扑的工作原理和动作模式,并对软开关动作时序的瞬态过渡过程进行了数学分析。最后,对提出的新型软开关逆变器驱动三相R-L负载进行了仿真研究,仿真结果验证了电路结构和理论分析的正确性与可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号