首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polymer‐based electrodes for interfacing biological tissues are becoming increasingly sophisticated. Their many functions place them at the cross‐roads of electromaterials, biomaterials, and drug‐delivery systems. For conducting polymers, the mechanism of conductivity requires doping with anionic molecules such as extracellular matrix molecules, a process that distinguishes them as biomaterials and provides a means to control interactions at the cellular–electrode interface. However, due to their complex structure, directly observing the selective binding of target molecules or proteins has so far eluded researchers. This situation is compounded by the polymer's ability to adopt different electronic states that alter the polymer–dopant interactions. Here, the ability to resolve sub‐molecular binding specificity between sulfate and carboxyl groups of dopants and heparin binding domains of human plasma fibronectin is demonstrated. The interaction exploits a form of biological ‘charge complementarity’ to enable specificity. When an electrical signal is applied to the polymer, the specific interaction is switched to a non‐specific, high‐affinity binding state that can be reversibly controlled using electrochemical processes. Both the specific and non‐specific interactions are integral for controlling protein conformation and dynamics. These details, which represent the first direct measurement of biomolecular recognition between a single protein and any type of organic conductor, give new molecular insight into controlling cellular interactions on these polymer surfaces.  相似文献   

2.
Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS‐based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation (“electrogelation”) method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high‐performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures.  相似文献   

3.
Polypyrrole (PPy) is a conjugated polymer that displays particular electronic properties including conductivity. In biomedical applications, it is usually electrochemically generated with the incorporation of any anionic species including also negatively charged biological macromolecules such as proteins and polysaccharides to give composite materials. In biomedical research, it has mainly been assessed for its role as a reporting interface in biosensors. However, there is an increasing literature on the application of PPy as a potentially electrically addressable tissue/cell support substrate. Here, we review studies that have considered such PPy based conducting polymers in direct contact with biological tissues and conclude that due to its versatile functional properties, it could contribute to a new generation of biomaterials.  相似文献   

4.
The conducting polymer polyethylenedioxythiophene doped with polystyrene sulfonate (PEDOT:PSS) has become one of the most successful organic conductive materials due to its high air stability, high electrical conductivity, and biocompatibility. In recent years, a great deal of attention has been paid to its fundamental physicochemical properties, but its healability has not been explored in depth. This communication reports the first observation of mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be electrically healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, after being wetted the films are transformed into autonomic self‐healing materials without the need of external stimulation. This work reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bioimplanted electronics, placing conducting polymers on the front line for healing applications in electronics.  相似文献   

5.
Nerve system diseases like Parkinson's disease, Huntington's disease, Alzheimer's disease, etc. seriously affect thousands of patients' lives every year, making them suffer from pains and inconvenience. Recently, bio‐interfaces between neural cells/tissues and polymer based biomaterials attracted worldwide attention due to the ability of polymer based biomaterials to serve as nerve conduits, drug carriers and neurites guidance platform in neuroregeneration. The role that bio‐interface played and the way it interacted with neural tissues and cells have been thoroughly investigated by the researchers. In this paper we mainly focus on reviewing the bio‐interface between nerve tissues/cells and advanced functional biocompatible polymers, such as conducting polymers and advanced carbon composite materials. These advanced polymers can provide combined interfacial stimulations including interfacial external neurotrophic factors (NTFs) delivery, electrical stimulation, surface guidance and molecules decoration to lesion cells and tissues to promote neuroregeneration in vitro and in vivo, and have contributed greatly to nerve diseases therapy. At the end of this review, the criteria of polymer based biomaterials utilized in neuroregeneration are summarized and the perspectives for future development of bio‐interfaces are also discussed.  相似文献   

6.
The conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT), and especially its complex with poly(styrene sulfonate) (PEDOT:PSS), is perhaps the most well‐known example of an organic conductor. It is highly conductive, largely transmissive to light, processible in water, and highly flexible. Much recent work on this ubiquitous material has been devoted to increasing its deformability beyond flexibility—a characteristic possessed by any material that is sufficiently thin—toward stretchability, a characteristic that requires engineering of the structure at the molecular‐ or nanoscale. Stretchability is the enabling characteristic of a range of applications envisioned for PEDOT in energy and healthcare, such as wearable, implantable, and large‐area electronic devices. High degrees of mechanical deformability allow intimate contact with biological tissues and solution‐processable printing techniques (e.g., roll‐to‐roll printing). PEDOT:PSS, however, is only stretchable up to around 10%. Here, the strategies that have been reported to enhance the stretchability of conductive polymers and composites based on PEDOT and PEDOT:PSS are highlighted. These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.  相似文献   

7.
Son SI  Pugal D  Hwang T  Choi HR  Koo JC  Lee Y  Kim K  Nam JD 《Applied optics》2012,51(15):2987-2996
Dielectric elastomers with low elastic stiffness and high dielectric constant are smart materials that produce large strains (up to 300%) and belong to the group of electroactive polymers. Dielectric elastomer actuators are made from films of dielectric elastomers coated on both sides with compliant electrode material. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is known as a transparent conducting polymer, has been widely used as an interfacial layer or polymer electrode in polymer electronic devices. In this study, we propose the transparent dielectric elastomer as a material of actuator driving variable-focus lens system using PEDOT as a transparent electrode. The variable-focus lens module has light transmittance up to 70% and maximum displacement up to 450. When voltage is applied to the fabricated lens module, optical focal length is changed. We anticipate our research to be a starting point for new model of variable-focus lens system. This system could find applications in portable devices, such as digital cameras, camcorder, and cell phones.  相似文献   

8.
Surface nanotexturing with excellent light‐trapping property is expected to significantly increase the conversion efficiency of solar cells. However, limited by the serious surface recombination arising from the greatly enlarged surface area, the silicon (Si) nanotexturing‐based solar cells cannot yet achieve satisfactory high efficiency, which is more prominent in organic/Si hybrid solar cells (HSCs) where a uniform polymer layer can rarely be conformably coated on nanotextured substrate. Here, the HSCs featuring advanced surface texture of periodic upright nanopyramid (UNP) arrays and hole‐conductive conjugated polymers, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are investigated. The tetramethylammonium hydroxide etching is used to smooth the surface morphologies of the Si‐UNPs, leading to reduced surface defect states. The uniform Si‐UNPs together with silane chemical‐incorporated PEDOT:PSS solution enable the simultaneous realization of excellent broadband light absorption as well as enhanced electrical contact between the textured Si and the conducting polymer. The resulting PEDOT:PSS/Si HSCs textured with UNP arrays show a promising power conversion efficiency of 13.8%, significantly higher than 12.1% of the cells based on the‐state‐of‐the‐art surface texture with random pyramids. These results provide a viable route toward shape‐controlled nanotexturing‐based high‐performance organic/Si HSCs.  相似文献   

9.
Conjugated polymers due to their reversible transition between the redox states are potentially able to immobilise and release ionic species. In this study, we have successfully developed a conducting polymer system based on poly(3,4-ethylenedioxythiophene) (PEDOT) for electrically triggered, local delivery of an ionic form of ibuprofen (IBU), a non-steroidal anti-inflammatory, and analgesic drug. It was shown that by changing the electropolymerisation conditions, the polymer matrix of specified IBU content can be synthesised. The electrochemical synthesis has been optimised to obtain the conducting matrix with the highest possible drug content. The process of electrically stimulated drug release has been extensively studied in terms of the dynamics of the controlled IBU release under varying conditions. The maximum concentration of the released IBU, 0.66 (±0.10) mM, was observed at the applied potential E = ?0.5 V (vs. Ag/AgCl). It was demonstrated that the immobilisation-release procedure can be repeated several times making the PEDOT matrix promising materials for controlled drug release systems applied e.g. in neuroprosthetics.  相似文献   

10.
In this work, conducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT), PEDOT/carbon nanotubes (CNTs), and PEDOT/reduced graphene oxide (RGO) were prepared via an in situ chemical vapor phase polymerization (VPP) process. Experiment results showed that PEDOT and PEDOT nanocomposites were uniformly constructed in oxidant and oxidant nanocomposite films through a modifying template effect. The VPP PEDOT and its nanocomposites were built on aluminium film as supercapaitor electrode materials and electrochemical capacitive properties were investigated by using cycle voltammetry and charge/discharge techniques. The VPP PEDOT exhibited a specific capacitance of 92 F/g at a current density of 0.2 A/g. The VPP PEDOT composites consisting of CNTs and RGO displayed specific capacitances of 137 and 156 F/g, respectively, at the same current density. For VPP nanocomposites, more than 80 % of initial capacitance was retained after 1,000 charge/discharge cycles, suggesting a good cycling stability for electrochemical electrode materials. The good capacitive performance of the conducting polymer nanocomposites are contributed to the synergic effect of the two components.  相似文献   

11.
An in vitro comparison of conducting‐polymer nanotubes of poly(3,4‐ethylenedioxythiophene) (PEDOT) and poly(pyrrole) (PPy) and to their film counterparts is reported. Impedance, charge‐capacity density (CCD), tendency towards delamination, and neurite outgrowth are compared. For the same deposition charge density, PPy films and nanotubes grow relatively faster vertically, while PEDOT films and nanotubes grow more laterally. For the same deposition charge density (1.44 C cm?2), PPy nanotubes and PEDOT nanotubes have lower impedance (19.5 ± 2.1 kΩ for PPy nanotubes and 2.5 ± 1.4 kΩ for PEDOT nanotubes at 1 kHz) and higher CCD (184 ± 5.3 mC cm?2 for PPy nanotubes and 392 ± 6.2 mC cm?2 for PEDOT nanotubes) compared to their film counterparts. However, PEDOT nanotubes decrease the impedance of neural‐electrode sites by about two orders of magnitude (bare iridium 468.8 ± 13.3 kΩ at 1 kHz) and increase capacity of charge density by about three orders of magnitude (bare iridium 0.1 ± 0.5 mC cm?2). During cyclic voltammetry measurements, both PPy and PEDOT nanotubes remain adherent on the surface of the silicon dioxide while PPy and PEDOT films delaminate. In experiments of primary neurons with conducting‐polymer nanotubes, cultured dorsal root ganglion explants remain more intact and exhibit longer neurites (1400 ± 95 µm for PPy nanotubes and 2100 ± 150 µm for PEDOT nanotubes) than their film counterparts. These findings suggest that conducting‐polymer nanotubes may improve the long‐term function of neural microelectrodes.  相似文献   

12.
Prospective application fields of organic functional polymers, polymer actuators and transistors The paper gives a short survey of prospective high tech products in which conducting polymers and other polymers with special electronic properties will be applied. Such products are, for example, polymer actuators, organic field effect transistors (OFET's) and integrated plastic circuits, organic light emitting diodes (OLED's), plastic solar or photovoltaic cells, membranes for fuel cells, polymer batteries and various polymer sensors. It will be informed about structures and properties of intrinsic conducting polymers and more in detail on electro‐chemo‐mechanical polymer actuators and on polymeric field effect transistors.  相似文献   

13.
Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well‐defined composition. Synthetic nanoclays are plate‐like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface‐to‐volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state‐of‐the‐art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay‐based biomaterials are identified.  相似文献   

14.
In these recent years, polymer blending is one of the significant interests by tissue engineering experts, since blending could produce biomaterials with enhanced physical and biological properties compare to the parent materials. In this context, present study aims at formation and characterization of polymeric blend of poly (vinylalcohol) and poly (vinylpyrrolidone) produced for tissue engineering application. Both polymers are blended at different concentrations to obtain films and nanofibers using solvent casting and electrospinning method respectively. The successful blending is confirmed by Fourier transform infrared spectroscopy, Field emission scanning electron microscope analysis and X‐ray diffraction. Later glutaraldehyde was added to chemically cross link the polymers and its effect was investigated on swelling and solubility properties of the blend. Experimental results reveal a relevant enhancement in the properties of poly (vinylalcohol) and poly (vinylpyrrolidone) blend when glutaraldehyde was added.  相似文献   

15.
In vitro real-time characterization of cell attachment and spreading   总被引:2,自引:0,他引:2  
A method based on the piezoelectric quartz crystal microbalance (QCM) technique for in vitro real-time characterization of cell attachment and spreading on surfaces has been developed. The method simultaneously measures the resonant frequency, f, and the dissipation energy, D, of the oscillating system. The QCM responses are sensitive to very small amounts (a few hundreds) of cells and highly specific to surface chemical properties. The first results from deposition of cells on two polystyrene surfaces of different wettability in serum-containing medium are reported. It has previously been shown that a decrease in f is related to the degree of cell spreading. In our data it appears that the extent or quality of cell attachment is reflected in an increase in D caused by adhering cells. The combined information from f and D measured by this technique might therefore be useful to probe cell–surface interactions for biomaterials. © 1998 Kluwer Academic Publishers  相似文献   

16.
In this work, a quartz crystal microbalance (QCM)-based adsorption sensor system with high sensitivity, selectivity, and reproducibility is designed and fabricated. The functional polymers such as polypyrrole, poly(3,4-ethylenedioxythiophene) (PEDOT), and polystyrene are coated on 8 MHz AT-cut quartz crystal surfaces as sensing materials for SO2 and NO2. All sensing materials on the QCM surface are characterized experimentally by SEM and AFM. The frequency shifts of the QCM by adsorption and desorption of gases are measured and analyzed to assess the practical applicability of the sensor system. The overall results show that the QCM coated with polypyrrole is highly selective for SO2 gas and that coated with PEDOT is for NO2. It is proven that the QCM-based adsorption sensor system is possible for monitoring SO2 and NO2 gases in the mixture of ppm level.  相似文献   

17.
Bone Morphogenetic Proteins (BMPs) in combination with biomaterials are being explored for clinical bone regeneration. The current biomaterials used for BMPs delivery are not specifically designed to support BMP‐induced osteogenesis. Towards this goal, we designed synthetic N‐isopropylacrylamide (NiPAM)‐based thermosensitive polymers and investigated their ability to support osteogenic transformation of pluripotent C2C12 cells. Cell attachment to the polymers was limited as compared to attachment to the plastic surfaces optimized for cell culture. Short‐term (<7 days) studies indicated relatively little cell growth on the polymer surfaces. However, C2C12 cells retained their ability to respond to BMP‐2, as determined by alkaline phosphatase (ALP) induction, when cultured on thermoreversible polymers. Some polymers supported ALP induction that was far superior (~10‐fold) to cells grown on tissue culture surfaces. We conclude that thermosensitive polymers, although limited in their ability to support cell attachment and growth, did support the pluripotent cells' ability to be transformed under the influence of BMP‐2. The ALP induction was dependent on the compositional details of the polymers, suggesting that in vivo osteoinduction was likely to be influenced by the physicochemical properties of the polymers.  相似文献   

18.
Organic polymers as functional materials for chemical sensors The function of many chemical sensors for measurements in liquids and in gases with ambient temperature is based on the combination of a transducer with organic membranes. These membrans determine essential sensor properties as selectivity, sensitivity and response characteristics. In addition they protect the detection system against external influences. Therefore the selection and synthesis of polymer membranes are an essential constituent of the sensor investigation and sensor development. Electrical, optical and biological properties of the polymers are important in this case. A survey of the materials used in the remote sensing is given. Of special interest to the sensor investigation are in last time intrinsic conducting polymers (ILP) whose properties opened new possibilities of the sensor development. With the help of an electrochemical pH glass electrode with inner solid contact it is shown that polypyrrole can be used as a material for a long‐lived inner solid contact and as substitute for inner secondary reference electrode. Practice tests confirm the suitability of this polymer material. Aspects of the transport mechanism of electrical charges through the boundary surface conducting polymer | glass are discussed.  相似文献   

19.
The design of an all‐plastic field‐effect nanofluidic diode is proposed, which allows precise nanofluidic operations to be performed. The fabrication process involves the chemical synthesis of a conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) layer over a previously fabricated solid‐state nanopore. The conducting layer acts as gate electrode by changing its electrochemical state upon the application of different voltages, ultimately changing the surface charge of the nanopore. A PEDOT‐based nanopore is able to discriminate the ionic species passing through it in a quantitative and qualitative manner, as PEDOT nanopores display three well‐defined voltage‐controlled transport regimes: cation‐rectifying, non‐rectifying, and anion rectifying regimes. This work illustrates the potential and versatility of PEDOT as a key enabler to achieve electrochemically addressable solid‐state nanopores. The synergism arising from the combination of highly functional conducting polymers and the remarkable physical characteristics of asymmetric nanopores is believed to offer a promising framework to explore new design concepts in nanofluidic devices.  相似文献   

20.
In this paper we propose the use of a microwave technique to measure the conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films. The PEDOT layers were prepared by electropolymerization from aqueous solutions using both poly(sodium 4-styrene sulphonate) (NaPSS) and sodium dodecyl sulphate (NaDS) acting as monomer solubilizer and dopant for the polymer. The conductive properties of a series of samples produced under different synthesis conditions and characterized by different structures have been investigated by microwave measurements in the frequency range from 40 MHz to 40 GHz by using a Corbino disc geometry. Such technique allows to estimate the mean conductivity of the polymer samples overcoming the limitations of the measuring configurations typically imposed by the conventional d.c. measurements. The morphology of PEDOT films and the structure of polymer chains were studied by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The correlated morphological, structural and microwave analysis enabled us to evidence several factors that affect the macroscopic scale conductivity of the polymer sample films and to identify the conditions for preparation of PEDOT films with functional properties relevant to technological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号