首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the (2  ×  2)-subpermanents of a generic matrix generate an ideal whose height, unmixedness, primary decomposition, the number and structure of the minimal components, resolutions, radical, integral closure and Gröbner bases all depend on the characteristic of the underlying subfield: if the characteristic of the subfield is two, this ideal is the determinantal ideal for which all of these properties are already well known. We show that as long as the characteristic of the subfield is not two, the results are in marked contrast with those for the determinantal ideals.  相似文献   

2.
This paper presents an algorithm for the Quillen–Suslin Theorem for quotients of polynomial rings by monomial ideals, that is, quotients of the form A = k [ x0, . . . ,xn ] / I, with I a monomial ideal and k a field. Vorst proved that finitely generated projective modules over such algebras are free. Given a finitely generated module P, described by generators and relations, the algorithm tests whether P is projective, in which case it computes a free basis forP .  相似文献   

3.
In this paper, we present a method that simplifies the interconnect complexity of N × M resistive sensor arrays from N × M to N + M. In this method, we propose to use two sets of interconnection lines in row–column fashion with all the sensor elements having one of their ends connected to a row line and other end to a column line. This interconnection overloading results in crosstalk among all the elements. This crosstalk causes the spreading of information over the whole array. The proposed circuit in this method takes care of this effect by minimizing the crosstalk. The circuit makes use of the concept of virtual same potential at the inputs of an operational amplifier in negative feedback to obtain a sufficient isolation among various elements. We theoretically present the suitability of the method for small/moderate sized sensor arrays and experimentally verify the predicted behavior by lock-in-amplifier based measurements on a light dependent resistor (LDR) in a 4 × 4 resistor array. Finally, we present a successful implementation of this method on a 16 × 16 imaging array of LDR.  相似文献   

4.
We modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982) 515–534 towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis. Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length 2O(n), SLLL-reduction runs in O (n5 +ε) bit operations for every ε > 0, compared to O (n7 +ε) for the original LLL and to O (n6 +ε) for the LLL-algorithms of Schnorr, A more efficient algorithm for lattice reduction, Journal of Algorithm, 9 (1988) 47–62 and Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. TR 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of Computer Science, Zurich, Switzerland, July 1996. We present an even faster algorithm for SLLL-reduction via iterated subsegments running in O (n3log n) arithmetic steps. Householder reflections are shown to provide better accuracy than Gram–Schmidt for orthogonalizing LLL-bases in floating point arithmetic.  相似文献   

5.
Using a constructive field-ideal correspondence it is shown how to compute the transcendence degree and a (separating) transcendence basis of finitely generated field extensionsk (x) / k(g), resp. how to determine the (separable) degree if k(x) / k(g) is algebraic. Moreover, this correspondence is used to derive a method for computing minimal polynomials and deciding field membership. Finally, a connection between certain intermediate fields of k(x) / k(g) and a minimal primary decomposition of a suitable ideal is described. For Galois extensions the field-ideal correspondence can also be used to determine the elements of the Galois group.  相似文献   

6.
We study the Weyl closure Cl(L)  = K(x)〈L  D for an operator L of the first Weyl algebra D = Kx, 〉. We give an algorithm to compute Cl(L) and we describe its initial ideal under the order filtration. Our main application is an algorithm for constructing a Jordan–Hölder series for a holonomic D -module and a formula for its length. Using the closure, we also reproduce a result ofStrömbeck (1978), who described the initial ideals of left ideals of D under the order filtration, and a result ofCannings and Holland (1994), who described the isomorphism classes of right ideals of D.  相似文献   

7.
The implicit Colebrook–White equation has been widely used to estimate the friction factor for turbulent fluid-flow in rough-pipes. In this paper, the state-of-the-art review for the most currently available explicit alternatives to the Colebrook–White equation, is presented. An extensive comparison test was established on the 20 × 500 grid, for a wide range of relative roughness (ε/D) and Reynolds number (R) values (1 × 10?6 ? ε/D ? 5 × 10?2; 4 × 103 ? R ? 108), covering a large portion of turbulent flow zone in Moody’s diagram. Based on the comprehensive error analysis, the magnitude points in which the maximum absolute and the maximum relative error are occurred at the pair of ε/D and R values, are observed. A limiting case of the most of these approximations provided friction factor estimates that are characterized by a mean absolute error of 5 × 10?4, a maximum absolute error of 4 × 10?3 whereas, a mean relative error of 1.3% and a maximum relative error of 5.8%, over the entire range of ε/D and R values, respectively. For practical purposes, the complete results for the maximum and the mean relative errors versus the 20 sets of ε/D value, are also indicated in two comparative figures. The examination results for error properties of these approximations gives one an opportunity to practically evaluate the most accurate formula among of all the previous explicit models; and showing in this way its great flexibility for estimating turbulent flow friction factor. Comparative analysis for the mean relative error profile revealed, the classification for the best-fitted six equations examined was in a good agreement with those of the best model selection criterion claimed in the recent literature, for all performed simulations.  相似文献   

8.
The well-known Goldbach Conjecture (GC) states that any sufficiently large even number can be represented as a sum of two odd primes. Although not yet demonstrated, it has been checked for integers up to 1014. Using two stronger versions of the conjecture, we offer a simple and fast method for recognition of a gray box group G known to be isomorphic to Sn(or An) with knownn   20, i.e. for construction1of an isomorphism from G toSn (or An). Correctness and rigorous worst case complexity estimates rely heavily on the conjectures, and yield times of O([ρ + ν + μ ] n log2n) or O([ ρ + ν + μ ] n logn / loglog n) depending on which of the stronger versions of the GC is assumed to hold. Here,ρ is the complexity of generating a uniform random element of G, ν is the complexity of finding the order of a group element in G, and μ is the time necessary for group multiplication in G. Rigorous lower bound and probabilistic approach to the time complexity of the algorithm are discussed in the Appendix.  相似文献   

9.
Let C be a curve of genus 2 and ψ1: C    E 1  a map of degree n, from C to an elliptic curveE1 , both curves defined over C. This map induces a degree n map φ1:P1    P 1  which we call a Frey–Kani covering. We determine all possible ramifications for φ1. If ψ1:C    E 1  is maximal then there exists a maximal map ψ2: C    E 2  , of degree n, to some elliptic curveE2 such that there is an isogeny of degree n2from the JacobianJC to E1 × E2. We say thatJC is (n, n)-decomposable. If the degree n is odd the pair (ψ2, E2) is canonically determined. For n =  3, 5, and 7, we give arithmetic examples of curves whose Jacobians are (n, n)-decomposable.  相似文献   

10.
《Computers & Fluids》2006,35(8-9):863-871
Following the work of Lallemand and Luo [Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys Rev E 2003;68:036706] we validate, apply and extend the hybrid thermal lattice Boltzmann scheme (HTLBE) by a large-eddy approach to simulate turbulent convective flows. For the mass and momentum equations, a multiple-relaxation-time LBE scheme is used while the heat equation is solved numerically by a finite difference scheme. We extend the hybrid model by a Smagorinsky subgrid scale model for both the fluid flow and the heat flux. Validation studies are presented for laminar and turbulent natural convection in a cavity at various Rayleigh numbers up to 5 × 1010 for Pr = 0.71 using a serial code in 2D and a parallel code in 3D, respectively. Correlations of the Nusselt number are discussed and compared to benchmark data. As an application we simulated forced convection in a building with inner courtyard at Re = 50 000.  相似文献   

11.
Computations of irregular primes and associated cyclotomic invariants were extended to all primes up to 12 million using multisectioning/convolution methods and a novel approach which originated in the study of Stickelberger codes Shokrollahi (1996). The latter idea reduces the problem to that of finding zeros of a polynomial overFpof degree  <  (p   1) / 2 among the quadratic nonresidues mod p. Use of fast polynomial gcd-algorithms gives anO (p log2p loglog p)-algorithm for this task. A more efficient algorithm, with comparable asymptotic running time, can be obtained by using Schönhage–Strassen integer multiplication techniques and fast multiple polynomial evaluation algorithms; this approach is particularly efficient when run on primes p for whichp   1 has small prime factors. We also give some improvements on previous implementations for verifying the Kummer–Vandiver conjecture and for computing the cyclotomic invariants of a prime.  相似文献   

12.
13.
14.
Data partitioning and scheduling is one the important issues in minimizing the processing time for parallel and distributed computing system. We consider a single-level tree architecture of the system and the case of affine communication model, for a general m processor system with n rounds of load distribution. For this case, there exists an optimal activation order, optimal number of processors m* (m *  m), and optimal rounds of load distribution n* (n *  n), such that the processing time of the entire processing load is a minimum. This is a difficult optimization problem because for a given activation order, we have to first identify the processors that are participating (in the computation process) in every round of load distribution and then obtain the load fractions assigned to them, and the processing time. Hence, in this paper, we propose a real-coded genetic algorithm (RCGA) to solve the optimal activation order, optimal number of processors m* (m *  m), and optimal rounds of load distribution n* (n *  n), such that the processing time of the entire processing load is a minimum. RCGA employs a modified crossover and mutation operators such that the operators always produce a valid solution. Also, we propose different population initialization schemes to improve the convergence. Finally, we present a comparative study with simple real-coded genetic algorithm and particle swarm optimization to highlight the advantage of the proposed algorithm. The results clearly indicate the effectiveness of the proposed real-coded genetic algorithm.  相似文献   

15.
《Information Sciences》2007,177(8):1782-1788
In this paper, we explore the 2-extra connectivity and 2-extra-edge-connectivity of the folded hypercube FQn. We show that κ2(FQn) = 3n  2 for n  8; and λ2(FQn) = 3n  1 for n  5. That is, for n  8 (resp. n  5), at least 3n  2 vertices (resp. 3n  1 edges) of FQn are removed to get a disconnected graph that contains no isolated vertices (resp. edges). When the folded hypercube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for reliability and fault tolerance of the system.  相似文献   

16.
In this paper, a quadtree-based mesh generation method is described to create guaranteed-quality, geometry-adapted all-quadrilateral (all-quad) meshes with feature preservation for arbitrary planar domains. Given point cloud, our method generates all-quad meshes with these points as vertices and all the angles are within [45°, 135°]. For given planar curves, quadtree-based spatial decomposition is governed by the curvature of the boundaries and narrow regions. 2-refinement templates are chosen for local mesh refinement without creating any hanging nodes. A buffer zone is created by removing elements around the boundary. To guarantee the mesh quality, the angles facing the boundary are improved via template implementation, and two buffer layers are inserted in the buffer zone. It is proved that all the elements of the final mesh are quads with angles between 45° ± ε and 135° ± ε (ε  5°) with the exception of badly shaped elements that may be required by the sharp angles in the input geometry. We also prove that the scaled Jacobians defined by two edge vectors are in the range of [sin(45° ? ε), sin90°], or [0.64, 1.0]. Furthermore, sharp features and narrow regions are detected and preserved automatically. Boundary layer meshes are generated by splitting elements of the second buffer layer. We have applied our algorithm to a set of complicated geometries, including the Lake Superior map and the air foil with multiple components.  相似文献   

17.
Let L = K(α) be an Abelian extension of degree n of a number field K, given by the minimal polynomial of α over K. We describe an algorithm for computing the local Artin map associated with the extension L / K at a finite or infinite prime v of K. We apply this algorithm to decide if a nonzero a  K is a norm from L, assuming that L / K is cyclic.  相似文献   

18.
In this paper, we present a novel hexagon-based mesh generation method which creates all-quadrilateral (all-quad) meshes with guaranteed angle bounds and feature preservation for arbitrary planar domains. Given any planar curves, an adaptive hexagon-tree structure is constructed by using the curvature of the boundaries and narrow regions. Then a buffer zone and a hexagonal core mesh are created by removing elements outside or around the boundary. To guarantee the mesh quality, boundary edges of the core mesh are adjusted to improve their formed angles facing the boundary, and two layers of quad elements are inserted in the buffer zone. For any curve with sharp features, a corresponding smooth curve is firstly constructed and meshed, and then another layer of elements is inserted to match the smooth curve with the original one. It is proved that for any planar smooth curve all the element angles are within [60° ? ε, 120° + ε] (ε ? 5°). We also prove that the scaled Jacobians defined by two edge vectors are in the range of [sin (60° ? ε),  sin 90°], or [0.82, 1.0]. The same angle range can be guaranteed for curves with sharp features, with the exception of small angles in the input curve. Furthermore, an approach is introduced to match the generated interior and exterior meshes with a relaxed angle range, [30°, 150°]. We have applied our algorithm to a set of complicated geometries, including the China map, the Lake Superior map, and a three-component air foil with sharp features. In addition, all the elements in the final mesh are grouped into five types, and most elements only need a few flops to construct the stiffness matrix for finite element analysis. This will significantly reduce the computational time and the required memory during the stiffness matrix construction.  相似文献   

19.
We introduce a GPU-based parallel vertex substitution (pVS) algorithm for the p-median problem using the CUDA architecture by NVIDIA. pVS is developed based on the best profit search algorithm, an implementation of vertex substitution (VS), that is shown to produce reliable solutions for p-median problems. In our approach, each candidate solution in the entire search space is allocated to a separate thread, rather than dividing the search space into parallel subsets. This strategy maximizes the usage of GPU parallel architecture and results in a significant speedup and robust solution quality. Computationally, pVS reduces the worst case complexity from sequential VS’s O(p · n2) to O(p · (n ? p)) on each thread by parallelizing computational tasks on GPU implementation. We tested the performance of pVS on two sets of numerous test cases (including 40 network instances from OR-lib) and compared the results against a CPU-based sequential VS implementation. Our results show that pVS achieved a speed gain ranging from 10 to 57 times over the traditional VS in all test network instances.  相似文献   

20.
A dataset of 237 human Ether-à-go-go Related Gene (hERG) potassium channel inhibitors (180 of which were used for model building and validation, whereas 57 constituted the “true” external prediction set) collected from 22 literature sources was modeled by 3D-SDAR. To produce reliable and reproducible classification models for hERG blocking, the initial set of 180 chemicals was split into two subsets: a balanced modeling set consisting of 118 compounds and an unbalanced validation set comprised of 62 compounds. A PLS bagging-like algorithm written in Matlab was used to process the data and assign each compound to one of the two (hERG+ or hERG-) activity classes. The best predictive model evaluated on the basis of a fully randomized hold-out test set (comprising 20% of the modeling set) used 4 latent variables and a grid of 6 ppm × 6 ppm × 1 Å in the C-C region, 6 ppm × 30 ppm × 1 Å in the C-N region, and 30 ppm × 30 ppm × 1 Å in the N-N region. An overall accuracy of 0.84 was obtained for both the hold-out test set and the validation set. Further, an external prediction set consisting of 57 drugs and drug derivatives was used to estimate the true predictive power of the reported 3D-SDAR model – a slight reduction of the overall accuracy down to 0.77 was observed. 3D-SDAR map of the most frequently occurring bins and their projection on the standard coordinate space of the chemical structures allowed identification of a three-center toxicophore composed of two aromatic rings and an amino group. A U test along the distance axis of the most frequently occurring 3D-SDAR bins was used to set the distance limits of the toxicophore. This toxicophore was found to be similar to an earlier reported phospholipidosis (PLD) toxicophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号