首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-β1). This study tested the hypothesis that IGF-1 and TGF-β1 regulate immature cartilage compressive moduli and Poisson’s ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-β1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson’s ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-β1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-β1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson’s ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-β1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.  相似文献   

3.
Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.  相似文献   

4.
There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole‐genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β‐cell regeneration. We then tested the proteins'' ability to potentiate β‐cell regeneration in zebrafish at supraphysiological levels. One protein, insulin‐like growth factor (Igf) binding‐protein 1 (Igfbp1), potently promoted β‐cell regeneration by potentiating α‐ to β‐cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1''s effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co‐expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type‐2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β‐cell regeneration and highlight its clinical importance in diabetes.  相似文献   

5.
Recognition of the translation initiation codon is thought to require dissociation of eIF1 from the 40 S ribosomal subunit, enabling irreversible GTP hydrolysis (Pi release) by the eIF2·GTP·Met-tRNAi ternary complex (TC), rearrangement of the 40 S subunit to a closed conformation incompatible with scanning, and stable binding of Met-tRNAi to the P site. The crystal structure of a Tetrahymena 40 S·eIF1 complex revealed several basic amino acids in eIF1 contacting 18 S rRNA, and we tested the prediction that their counterparts in yeast eIF1 are required to prevent premature eIF1 dissociation from scanning ribosomes at non-AUG triplets. Supporting this idea, substituting Lys-60 in helix α1, or either Lys-37 or Arg-33 in β-hairpin loop-1, impairs binding of yeast eIF1 to 40 S·eIF1A complexes in vitro, and it confers increased initiation at UUG codons (Sui phenotype) or lethality, in a manner suppressed by overexpressing the mutant proteins or by an eIF1A mutation (17–21) known to impede eIF1 dissociation in vitro. The eIF1 Sui mutations also derepress translation of GCN4 mRNA, indicating impaired ternary complex loading, and this Gcd phenotype is likewise suppressed by eIF1 overexpression or the 17–21 mutation. These findings indicate that direct contacts of eIF1 with 18 S rRNA seen in the Tetrahymena 40 S·eIF1 complex are crucial in yeast to stabilize the open conformation of the 40 S subunit and are required for rapid TC loading and ribosomal scanning and to impede rearrangement to the closed complex at non-AUG codons. Finally, we implicate the unstructured N-terminal tail of eIF1 in blocking rearrangement to the closed conformation in the scanning preinitiation complex.  相似文献   

6.
7.
17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration.  相似文献   

8.
《FEMS yeast research》2005,5(2):141-147
UBP10 encodes a deubiquitinating enzyme of Saccharomyces cerevisiae. Its inactivation results in a complex phenotype characterized by a subpopulation of cells that exhibits the typical cellular markers of apoptosis. Here, we show that additional deletion of YCA1, coding for the yeast metacaspase, suppressed the ubp10 disruptant phenotype. Moreover, YCA1 overexpression, without any external stimulus, had a detrimental effect on growth and viability of ubp10 cells accompanied by an increase of apoptotic cells. This response was completely abrogated by ascorbic acid addition.We also observed that cells lacking UBP10 had an endogenous caspase activity, revealed by incubation in vivo with FITC-labeled VAD-fmk. All these results argue in favour of an involvement of the yeast metacaspase in the active cell death triggered by loss of UBP10 function.  相似文献   

9.
Latif SA  Shen M  Ge RS  Sottas CM  Hardy MP  Morris DJ 《Steroids》2011,76(7):682-689
Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C19- and C21-11β-OH-steroids, in the presence of [3H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p < 0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM).Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP+ regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems.  相似文献   

10.
11.
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh.) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3β-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 μm compared with 15 μm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2β-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3β-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2,3-oxido-GA9 and GA6.Dwarf mutants with reduced biosynthesis of the GA plant hormones have been valuable tools in studies of the function of these compounds (Ross, 1994). In Arabidopsis thaliana, mutations at six loci (GA1-GA6) that result in reduced GA biosynthesis have been identified (Koorneef and van der Veen, 1980; Sponsel et al., 1997), and three of these loci have recently been cloned. The GA1 locus was isolated by genomic subtraction (Sun et al., 1992) and shown by heterologous expression in Escherichia coli to encode the enzyme that cyclizes geranylgeranyl diphosphate to copalyl diphosphate (Sun and Kamiya, 1994). This enzyme was formerly referred to as ent-kaurene synthase A but has been renamed copalyl diphosphate synthase (Hedden and Kamiya, 1997; MacMillan, 1997). The GA5 locus was shown to correspond to one of the GA 20-oxidase genes (Xu et al., 1995), the products of which catalyze the conversion of GA12 to GA9 and GA53 to GA20 (Phillips et al., 1995; Xu et al., 1995). GA 20-oxidases are 2-oxoglutarate-dependent dioxygenases that are encoded by small multigene families, members of which are differentially expressed in plant tissues (Phillips et al., 1995; Garcia-Martinez et al., 1997).The GA4 locus was isolated by T-DNA tagging and, on the basis of the derived amino acid sequence, was also shown to encode a dioxygenase (Chiang et al., 1995). Several lines of evidence indicate that the GA4 gene encodes a GA 3β-hydroxylase. Shoots of a ga4 mutant, all alleles of which are semidwarf, contained reduced concentrations of the 3β-hydroxy GAs GA1, GA4, and GA8 compared with the Landsberg erecta wild type, whereas levels of immediate precursors to these GAs were elevated (Talon et al., 1990). Furthermore, metabolism of [13C]GA20 to [13C]GA1 was substantially less in the mutant than in the wild type (Kobayashi et al., 1994). In the present paper we confirm by functional expression of its cDNA in E. coli that GA4 encodes a GA 3β-hydroxylase. In addition, we determine the substrate specificity of recombinant GA4 using a number of C20- and C19-GAs and show by kinetic analysis that the enzyme has a higher affinity for GA9 than for GA20, which is consistent with the non-13-hydroxylation pathway predominating in Arabidopsis (Talon et al., 1990).  相似文献   

12.
Alpha-particle irradiation of cells damages not only the irradiated cells but also nontargeted bystander cells. It has been proposed that the bystander effect is caused by oxidants and free radicals generated by the radiation. Recent studies have shown that α(1)-microglobulin protects against cell damage caused by oxidants and free radicals. Using a novel experimental system that allows irradiation of 0.02% of a human hepatoma monolayer, leaving 99.98% as bystander cells, we investigated the influence of oxidative stress and the cell-protective effects of α(1)-microglobulin during α-particle irradiation. The results showed an increase in cell death in both irradiated cells and bystander cells. A significant increase in apoptosis, oxidation markers and expression of the stress response genes heme oxygenase 1, superoxide dismutase, catalase, glutathione peroxidase 1, p21 and p53 were observed. Addition of α(1)-microglobulin reduced the amount of dead cells and inhibited apoptosis, formation of oxidation markers, and up-regulation of stress response genes. The results emphasize the role of oxidative stress in promoting bystander effects. Furthermore, the results suggest that α(1)-microglobulin protects nonirradiated cells by eliminating oxidants and free radicals generated by radiation and imply that α(1)-microglobulin can be used in radiation therapy of tumors to minimize damage to surrounding tissues.  相似文献   

13.
The most common mutation associated with cystic fibrosis is the deletion of phenylalanine 508 of cystic fibrosis transmembrane conductance regulator (CFTRΔF508). This mutation renders otherwise functional protein susceptible to ER-associated degradation (ERAD) and prevents CFTR from exiting the ER and trafficking to the plasma membrane. In this study, we demonstrate that RNAi-mediated silencing of gp78, an established ubiquitin ligase (E3) involved in ERAD, leads to accumulation of CFTRΔF508 protein in cells. gp78 facilitates the degradation of CFTRΔF508 by enhancing both its ubiquitination and interaction with p97/VCP. SVIP, which is the inhibitor of gp78, causes accumulation of CFTRΔF508. We showed that endogenous gp78 co-immunoprecipitates with Hrd1. Furthermore, the results indicate that silencing the expression of another ERAD E3, Hrd1, leads to stabilization of gp78 and decline in gp78 ubiquitination; thereby enhancing CFTRΔF508 degradation. The results support that gp78 is an E3 targeting CFTRΔF508 for degradation and Hrd1 inhibits CFTRΔF508 degradation by acting as an E3 for gp78.  相似文献   

14.
15.

Background

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.

Methods

We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.

Results

βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.

Conclusion

We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.  相似文献   

16.
Since there is evidence for estrogen and estrogen-like compounds to have beneficial effect on the pathogenesis of hepatocellular carcinoma (HCC), this study was designed to investigative the apoptotic and anti-proliferative effects of these compounds on the human hepatoma Hep3B cell line. The Hep3B cells were treated with 17β-estradiol (E2), diethylstilbestrol (DES), tamoxifen, and genistein. After treatments of these compounds at the concentration of 10-6 or 10-8 M, the Hep3B cells were demonstrated to have significant DNA fragmentation, nucleus condensation, cytochrome-c leaking from the mitochondria and caspase-3 activation by DAPI and Western blotting. The cells were also observed to have declined proliferative potential by MTT assay, arrested cell cycle by flow-cytometry measurements. However, the cytochrome-c leaking from the mitochondria induced by E2 and E2-like compounds was blocked totally by ICI 182,780 treatment. These finding suggest that estrogen and the estrogen-like compounds may induce anti-proliferative and apoptotic effects in Hep3B cells, and the E2 and the E2-like compounds mediated apoptotic effect was estrogen receptor dependent. Among the drugs tested, E2, E2 agonists (DES and genistein) and partial antagonist (tamoxifen), all showed the stronger anti-tumor potential. The last two authors, Wei-Wen Kuo and Chih-Yang Huang, share equal contribution.  相似文献   

17.
18.
The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.  相似文献   

19.
Chemokines rapidly and transiently upregulate α4β1 and αLβ2 integrin-mediated adhesion during T lymphocyte extravasation by activating Gα-dependent inside-out signaling. To limit and terminate Gα-mediated signaling, cells can use several mechanisms, including the action of regulator of G protein signaling (RGS) proteins, which accelerate the GTPase activity of Gα subunits. Using human T cells silenced for or overexpressing RGS10, we show in this article that RGS10 functions as an inhibitor of Gα(i)-dependent, chemokine-upregulated T cell adhesion mediated by α4β1 and αLβ2. Shear stress-dependent detachment and cell spreading analyses revealed that RGS10 action mainly targets the adhesion strengthening and spreading phases of α4β1-mediated cell attachment. Associated with these observations, chemokine-stimulated Vav1-Rac1 activation was longer sustained and of higher intensity in RGS10-silenced T cells, or inhibited in cells overexpressing RGS10. Of importance, expression of constitutively activated Rac1 forms in cells overexpressing RGS10 led to the rescue of CXCL12-stimulated adhesion to VCAM-1 to levels similar to those in control transfectants. Instead, adhesion under flow conditions, soluble binding experiment, flow cytometry, and biochemical analyses revealed that the earlier chemokine-triggered integrin activation step was mostly independent of RGS10 actions. The data strongly suggest that RGS10 opposes activation by chemokines of the Vav1-Rac1 pathway in T cells, leading to repression of adhesion strengthening mediated by α4β1. In addition to control chemokine-upregulated T cell attachment, RGS10 also limited adhesion-independent cell chemotaxis and activation of cdc42. These results identify RGS10 as a key molecule that contributes to the termination of Gα-dependent signaling during chemokine-activated α4β1- and αLβ2-dependent T cell adhesion.  相似文献   

20.
Carl van Walraven 《CMAJ》2013,185(16):E755-E762

Background:

Changes in the long-term survival of people admitted to hospital is unknown. This study examined trends in 1-year survival of patients admitted to hospital adjusted for improved survival in the general population.

Methods:

One-year survival after admission to hospital was determined for all adults admitted to hospital in Ontario in 1994, 1999, 2004, or 2009 by linking to vital statistics datasets. Annual survival in the general population was determined from life tables for Ontario.

Results:

Between 1994 and 2009, hospital use decreased (from 8.8% to 6.3% of the general adult population per year), whereas crude 1-year mortality among people with hospital admissions increased (from 9.2% to 11.6%). During this time, patients in hospital became significantly older (median age increased from 51 to 58 yr) and sicker (the proportion with a Charlson comorbidity index score of 0 decreased from 68.2% to 60.0%), and were more acutely ill on admission (elective admissions decreased from 47.4% to 42.0%; proportion brought to hospital by ambulance increased from 16.1% to 24.8%). Compared with 1994, the adjusted odds ratio (OR) for death at 1 year in 2009 was 0.78 (95% confidence interval [CI] 0.77–0.79). However, 1-year risk of death in the general population decreased by 24% during the same time. After adjusting for improved survival in the general population, risk of death at 1 year for people admitted to hospital remained significantly lower in 2009 than in 1994 (adjusted relative excess risk 0.81, 95% CI 0.80–0.82).

Interpretation:

After accounting for both the increased burden of patient sickness and improved survival in the general population, 1-year survival for people admitted to hospital increased significantly from 1994 to 2009. The reasons for this improvement cannot be determined from these data. Hospitals have a special place in most health care systems. Hospital staff care for the people with the most serious illnesses and the most vulnerable. They are frequently the location of many life-defining moments — including birth, surgery, acute medical illness and death — of many people and their families. Hospitals serve as a focus in the training of most physicians. In addition, they consume a considerable proportion of health care expenditures worldwide. 1 Given the prominence of hospitals in health care systems, measuring outcomes related to hospital care is important. In particular, the measurement of trends for outcomes of hospital care can help us to infer whether the care provided to hospital patients is improving. Previous such studies have focused on survival trends for specific diseases or patients who received treatment in specific departments. 2 12 None of these studies have adjusted for survival trends in the general population, the adjustment for which is important to determine whether changes in survival of patients in hospital merely reflect changes in the overall population. In this study, whether or not patient outcomes have changed over time was determined by examining trends in 1-year survival in all patients admitted to hospital, adjusting for improved survival in the general population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号