首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
运用激光熔覆技术修复受损的烟汽轮机叶片,在GH864镍基合金表面制备原位自生TiC颗粒增强Ni3(Si,Ti)金属间化合物复合涂层.利用扫描电镜、能谱分析仪、X射线衍射仪及显微硬度计研究了(Ti+C)的加入量对熔覆层组织及硬度的影响.研究表明:在优化的工艺参数下可获得宏观质量完好,无裂纹、气孔等缺陷,且与基体呈冶金结合的激光熔覆层,熔覆层由Ni(Si)、Ni3(Si,Ti)和TiC组成;当合金粉末中(Ti+C)的加入量为20%时熔覆层的硬度最高可达780Hv,是基体材料的2.4倍.  相似文献   

2.
安强  祁文军  左小刚 《材料工程》2022,50(4):139-146
采用激光熔覆技术在TA15钛合金表面原位合成TiC增强钛基涂层。利用光学显微镜、扫描电镜、X射线衍射仪、能谱分析仪、显微硬度计、摩擦磨损试验机等研究涂层的成形质量、微观组织、物相组成、硬度和摩擦学性能。结果表明:涂层主要由β-Ti,Co_(3)Ti,CrTi_(4)和TiC等物相组成,涂层与基体形成了良好的冶金结合。涂层结合区组织是平面晶和柱状晶,中部组织是树枝晶,顶部组织是等轴晶。涂层各微区的碳化钛形貌有显著差别,其中顶部和中部区域碳化钛为粗大的树枝状和花瓣状,而结合区为针状和近球状。涂层显微硬度最大值为715HV,约是TA15显微硬度(330HV)的2.1倍;同等条件下涂层磨损量为30.14 mg,约为TA15磨损量98.11 mg的30.7%。涂层与基体的磨损机制均为磨粒磨损和黏着磨损的复合磨损模式,但涂层的磨损程度较轻。  相似文献   

3.
《Materials Letters》2003,57(5-6):1233-1238
TiC-reinforced FeAl intermetallic matrix composite (IMC) coatings were fabricated on substrate of 1Cr18Ni9Ti stainless steel using laser cladding. X-ray diffraction (XRD) was used to identify the phases in the laser clad composite coating and the growth morphologies of TiC carbide were observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that there are two phases in the laser clad composite coating: TiC and FeAl intermetallic matrix alloy. The primary TiC carbide in laser clad coating nucleates heterogeneously on the surface of oxide particles; its growth morphology is found to be in a unique radial-branching dendrite with strongly faceted feature. The growth mechanism of TiC is confirmed to be lateral growth from the ledges or steps existing on the growing fronts.  相似文献   

4.
采用预置粉末式激光熔覆法在钛合金(Ti-6Al-4V)表面开展了Al_2O_3-13%(质量分数)TiO_2涂层的研究。利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)和显微硬度计研究了激光熔覆熔池的特征和涂层的显微结构,分析了涂层的成分分布、相组成和显微硬度分布情况。预置粉末激光熔覆制备的Al_2O_3-13%(质量分数)TiO_2涂层界面结合良好,涂层组织均匀,没有明显的裂纹和气孔。激光熔覆涂层表现出明显流线型特征,熔覆层截面分为热影响区、扩散结合区和涂层区。涂层由Ti、AlTi_3、α-Al_2O_3和γ-Al_2O_3等相组成。涂层的显微硬度达到1000~1300HV_(0.3),比基体硬度360~390HV_(0.3)高2倍。  相似文献   

5.
贺星  孔德军  宋仁国 《材料工程》2019,47(10):68-75
采用激光熔覆技术在S355海洋钢表面制备Al-Ni-TiC-CeO2熔覆涂层,通过SEM、EDS、XRD、显微硬度计等手段分析其表面-界面形貌、化学元素分布、物相组成及显微硬度,并研究其在3.5%(质量分数)NaCl溶液中耐腐蚀磨损与应力腐蚀开裂(stress corrosion cracking,SCC)等性能。结果表明:熔覆涂层主要由增强相TiC和连续相AlNi3,AlFe3组成,表面较为平整,无明显裂纹,稀释率为5%。涂层表面显微硬度达到809.3HV0.2,为基体的2.3倍。基体中交互作用主要以腐蚀加速磨损为主,而涂层中交互作用则以磨损加速腐蚀为主。基体材料与涂层的SCC敏感性分别为35.01%和17.69%,表明涂层能够明显抑制应力腐蚀开裂。  相似文献   

6.
Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of α′-Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure.  相似文献   

7.
AISI 1045 steel surface was alloyed with pre-placed ferrotitanium and graphite powders by using a 5-kW CO2 laser. In situ TiC particles reinforced Fe-based surface composite coating was fabricated. The microstructure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides with cubic or flower-like dendritic form were synthesized via in situ reaction between ferrotitanium and graphite in the molten pool during laser cladding process. The TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phase. The coatings reinforced by TiC particles revealed higher wear resistance than that of the substrate.  相似文献   

8.
Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a CO2 laser to produce the wear resistant composite layer. The macro and microstructural changes of an alloyed layer with the traveling speeds of laser beam, the precipitate morphology of TiC particulate and the hardness profile of the alloyed layer was examined. From the results, it was possible to composite TiC particulate on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of the laser remelted cast iron substrate without a titanium coating was about 1 × 104 K/s to 1 × 105 K/s in the order under the condition of this study. The microstructure of the alloyed layer consisted of three zones; the TiC particulate precipitate zone (MHV 400–500), the mixed zone of TiC particulate + ledeburite (MHV 650–900) and the ledeburite zone (MHV 500–700). TiC particulates were precipitated as a typical dendritic morphology. The secondary TiC dendrite arms were grown to a polygonized shape and were necking. Then the separated arms became cubic crystal of TiC at the slowly solidified zone. In the rapidly solidified zone near the fusion boundary, however the fine granular TiC particulates were grouped like grapes.  相似文献   

9.
With numerous reinforcements, aluminum and its alloys are finding growing applications in every sector of industry. Titanium carbide (TiC) is regarded as an outstanding reinforcing material as compared to widely used carbide particles because of its excellent physical and mechanical characteristics, as well as its especially good interfacial bonding (wetting) capacity with aluminum. In the present research work, the effect of the mixing time of the matrix and reinforcement powders has been investigated on the crystallite size and lattice strain of the AA7075–5 wt.% TiC composites. The mechanical properties of the developed composites were also investigated in terms of microhardness values. X-ray diffraction and scanning electron microscopy (SEM), transmission electron microscopy (TEM), particles size distribution analysis and x-ray energy dispersive spectroscopy (EDS) of the synthesized powder samples were done to see the effect of mixing time on their microstructures. The increase in mixing time led to a homogeneous distribution of 5 wt.% of TiC particles, a decrease in particles clustering. The considerable grain refining was confirmed, which reflected a reduction in particle size originating from a prolonged mixing time. The significant improvement in the crystallite size and microhardness of the produced composites were achieved with increasing mixing time.  相似文献   

10.
《Materials Letters》2007,61(11-12):2356-2358
A process of thermal spraying and laser remelting of a Ni-clad graphite powder to form a coating on Ti–6Al–4V substrate was carried out. A good coating without cracks and pores was obtained. The microstructure of the coating was examined using SEM and EDS. The coating mainly consists of austenitic nickel as matrix and TiC dendrite as reinforcement. During the laser remelting process, a reaction between C and Ti occurred, which lead to an in-situ synthesis of TiC reinforcement in the coating. The microhardness of the coating was measured using a Vickers hardness tester. The average microhardness of the composite coating is HV 1000 and it is two times greater than that of the Ti–6Al–4V substrate.  相似文献   

11.
Laser technology enables melting and alloying specimen surfaces without the substrate itself being heated, whereby surfaces with special attributes are obtained with the properties of the substrate remaining unaffected. The surfaces of Armco iron and AISI 1045 steel were laser-alloyed with TiC powder, a CO2 laser of 2.5 kW maximum power being used. Optimal laser and powder-feed parameters were established. Particles of TiC were injected into the molten surface layer, forming a composite material, steel + TiC. The microstructures were investigated metallographically. Some of the particles had partially melted during their passage through the laser beam and had re-solidified, forming small and fine dendrites. Phase identification by X-ray diffraction revealed the presence of -Fe, martensite, and Fe3C phases, as well as amounts of stochiometric TiC and unknown phases. Identification of phases by TEM and diffraction of electrons revealed the presence of unknown phases, such as tetragonal TiC and (FeTi)C. Mössbauer results show ternary Fe-Ti-C phases, which can be related to the TEM and X-ray diffraction results. A correlation was found between the substrate's composition, microstructures, and the different phases present.  相似文献   

12.
45 钢表面激光合金化组织分析及硬度测试   总被引:1,自引:1,他引:0       下载免费PDF全文
目的为了提高45钢表面性能,采用CO2激光器对其表面进行合金化处理。方法利用带有能谱的扫描电子显微镜(SEM/EDS)、金相显微镜、X射线衍射仪、显微/维氏硬度计、扫描电镜等,对合金化层组织及性能进行了观察和分析。结果激光合金化层由合金化区、结合区和热影响区3部分组成,涂层与基体呈冶金结合;涂层主要含Cr3C2,Fe Ni3,Cr23C6,Fe3C相;激光合金化层的显微硬度达1032 HV,约为基体的3.5倍。结论 45钢经激光合金化处理,可改善其表面性能,显著提高其硬度。  相似文献   

13.
Ultrahard titanium diboride (TiB2) coatings are deposited on plain carbon steel substrate using two high energy density processes, viz. pulsed electrode surfacing (PES) and laser surface engineering (LSE). These two processes are entirely different in physical nature and hence result in dissimilar microstructures. In the present investigation, a comparative study has been made between the evolved microstructures. Both processes produced a surface layer which is adherent and metallurgically bonded to the substrate. PES produced relatively thinner and less uniform coating than LSE process. The PES coating was, however, homogeneous and very fine grained. The laser-assisted coating was “composite” in nature with TiB2 particles embedded in Fe matrix. Mechanical characterization of these coatings has been performed using microhardness measurements.  相似文献   

14.
To investigate the effect of laser process parameters on microstructure and properties of composite coating, the composite coatings were manufactured by laser cladding Ni–Cr–Ti–B4C mixed powder on Q235 mild steel with different process parameters. The coatings are bonded with the substrate by remarkable metallurgical binding without cracks and pores. The composite coatings are consisted of in situ synthesized solid solution Ni–Cr–Fe, intermetallic compound (IMC) Ni3Ti, Cr2Ti, and ceramic reinforcements TiB2, TiC. Results of scanning electron microscopy (SEM) revealed that the ceramic reinforcements became coarser with higher specific energy (Es). There were independent ceramics TiB2, TiC, eutectic ceramic TiB2–TiC in coatings, and eutectic alloy–ceramic was detected. Compared with the substrate, the microhardness of coatings was increased significantly, and the maximum microhardness of coatings was approximately five times as high as the substrate. The wear resistance of coatings was improved dramatically than the substrate. Compared to the coatings with lower Es, higher Es led to lower microhardness and worse wear resistance ascribing to more Fe diffused into the coating from the substrate.  相似文献   

15.
龚玉兵  王善林  张子阳  李宏祥  陈玉华 《材料导报》2017,31(16):98-102, 106
以FeCoCrMoCBY块体合金为熔覆材料,采用激光熔覆在低碳钢表面制备非晶涂层,探讨不同激光功率对涂层成形及组织的影响,通过显微硬度仪、电化学工作站测试涂层显微硬度及耐腐蚀性能。研究结果表明,其他参数不变,激光功率为17.6~20.8 W时,涂层成形良好,与基材呈典型冶金结合。随激光功率增加,涂层稀释率升高,裂纹倾向增大,非晶化程度降低。激光功率为17.6 W时,涂层主要由非晶组成,稀释率低于24.2%,结构致密,包括热影响区、熔合区和熔覆区;涂层平均显微硬度为1 330HV,约高于基材9倍,在3.5%NaCl溶液中的耐腐蚀性能明显优于316L不锈钢。  相似文献   

16.
以FeSiB非晶带材为熔覆材料,采用激光熔覆在低碳钢表面制备高致密度涂层,利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度仪等研究不同脉冲宽度对激光熔覆涂层成形、组织特征及硬度的影响。结果表明:随脉冲宽度增大,涂层稀释率升高;裂纹倾向增加,裂纹源萌生由表面到界面处;晶化程度升高,结晶相为α-Fe,Fe_2B和Fe_3Si;熔合区宽度增大,柱状晶沿外延生长趋势更大;显微硬度先增加后减小。当脉冲宽度为3.2ms时,涂层结构致密,无孔洞缺陷,界面呈良好的冶金结合,稀释率低,为23.2%,涂层平均显微硬度达1192HV,约为基材的10倍。  相似文献   

17.
针对Ti811钛合金硬度低、耐磨性差的问题,以TC4粉、Ni45A粉和Y2O3粉为原料,采用同轴送粉激光熔覆技术在Ti811钛合金表面进行了激光熔覆制备耐磨复合涂层的实验,分析了熔覆层的组织和相组成,测试了熔覆层的显微硬度和摩擦磨损等力学性能。研究表明:复合涂层组织由枝晶TiC、依附生长于枝晶TiC表面的纳米颗粒TiC、生长于基体表面的等轴球形(近球形)TiC、金属间化合物Ti2Ni、增强相TiB、TiB2及基体α-Ti组成,所有生成相呈均匀弥散分布状态;涂层中等轴球形(近球形)TiC和Y2O3构成了复合相结构,经二维点阵错配度计算表明,Y2O3的(111)晶面与TiC的(110)晶面的二维点阵错配度δ=6.54%,因此Y2O3可作为TiC的有效异质形核核心细化晶粒;涂层的显微硬度处于HV0.5 655~700之间,较Ti811基材提高了约1.6~1.8倍;涂层的磨损机制主要为磨粒磨损,摩擦磨损性能较基材显著提升。   相似文献   

18.
A Fe‐based composite coating reinforced by in situ synthesized TiC particles was fabricated on Cr12MoV steel by using 6 KW fiber laser cladding. A serial of experiment has been carried out with different laser power, scanning speed, and powder feed rate, from which TiC could be in situ synthesized only in certain realms laser cladding parameters. X‐ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope and a hardness tester are used to test the microstructure, micro‐hardness and component distribution. The coating is mainly composed of alpha ;‐Fe, TiC and Fe3C. TiC particles were commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower‐like shape. The grains were refined, and there were no cracks and few stomas. Defect‐free coating with metallurgical joint to the substrate was obtained. TiC distributed more concentratively in the upper layers than the middle and bottom layers. From the surface of cladding layer 0.8 mm the highest micro‐hardness was up to HV930, obviously higher than that of the substrate.  相似文献   

19.
TiC/TiN+TiCN-reinforced composite coatings were fabricated on Ti–6Al–4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO2 was able to suppress crystallization and growth of crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO2, this coating exhibited fine microstructure. In this study, Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coatings have been studied by means of X-ray diffraction and scanning electron microscope. X-ray diffraction results indicated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0·3N0·7, Ce(CN)3 and CeO2, this phase constituent was beneficial in increasing microhardness and wear resistance of Ti–6Al–6V alloy.  相似文献   

20.
TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti?C6Al?C4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO2, this coating exhibited fine microstructure. In this study, the Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0·3N0·7, Ce(CN)3 and CeO2, this phase constituent was beneficial to increase the microhardness and wear resistance of Ti?C6Al?C6V alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号