首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)具有高导电性、高柔韧性、出色的稳定性、易于成膜和成本低等优点,被认为是最有价值的导电聚合物之一,它在储能转换和电子系统中有着广阔的应用前景。然而,原始的PEDOT:PSS薄膜的电导率较低(<1 S/cm),阻碍了要求其高导电性的实际应用,于是人们提出了各种方法来提高PEDOT:PSS薄膜的电导率。本文综述了优化PEDOT:PSS薄膜电导率的新进展,并介绍了掺杂处理、后处理等提高PEDOT:PSS薄膜电导率的方法。  相似文献   

2.
以3,4-乙烯二氧噻吩(EDOT)为原料,聚对苯乙烯磺酸钠(PSS-Na)为分散剂和掺杂剂,通过化学氧化合成法在水体系中聚合制备了聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)悬浮液,通过真空抽滤的方法制备了PEDOT:PSS自支撑柔性导电薄膜。通过FTIR、UV-Vis对聚合产物结构进行了表征与确认,通过四探针电导率测试、SEM、拉伸断裂强度测试对PEDOT:PSS薄膜的导电性、微观形貌与力学性能进行了表征。结果表明,成功制备了PEDOT:PSS目标产物,在氧化剂与单体物质的量之比为0.875时达到最佳电导率(19.19 S/cm)。自支撑薄膜厚度约18 μm,在25 ℃,40%~60%相对湿度范围内拉伸断裂强度达到45~60 MPa,具有良好的导电性与机械性能。  相似文献   

3.
木洋 《炭黑译丛》2006,(3):7-12
本发明与喷印和书写等领域使用的墨汁有关,涉及改性炭黑分散液及含该分散液的水性墨。  相似文献   

4.
以3,4-乙烯二氧噻吩(EDOT)为原料,聚对苯乙烯磺酸钠(PSS-Na)为分散剂和掺杂剂,通过化学氧化合成法在水体系中聚合制备了聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)悬浮液,通过真空抽滤法制备了PEDOT:PSS自支撑柔性导电薄膜。通过FTIR、UV-Vis对聚合产物结构进行了表征与确证,通过四探针电导率测试、SEM、拉伸断裂强度测试对PEDOT:PSS薄膜的导电性、微观形貌与力学性能进行了表征。结果表明,成功制备了PEDOT:PSS目标产物,在氧化剂过硫酸铵与单体EDOT物质的量比为0.875时达到最佳电导率(19.19 S/cm)。自支撑薄膜厚度约18μm,在25℃,40%~60%相对湿度范围内拉伸强度达到45~60MPa,具有良好的导电性与机械性能。  相似文献   

5.
马蔚 《上海涂料》1996,(2):30-33
1 简介——水的二次分散液 通常,水性聚合物分散液的制备是通过乳液聚合作用而完成。在本文我们报导在该领域中有些奇特的进展,那就是水的二次分散液。 这两种聚合物分散液的类型,由于它们制备顺序的不同而不相同。乳液聚合物的生产,是单体首先在水中乳化,然后再在分散相中聚合。生产这一类型的乳液,乳化剂和保护胶体是必不可少的。由于聚合物乳液粒子是在聚合过程中形成的,这些合成乳液有时称为原始分散液。 与这些系统形成对照,在二次分散液的聚合作用的行为是在均相中进行的——通常是在  相似文献   

6.
易英  罗甜  胡康迪  樊李红 《涂料工业》2023,(10):69-75+81
为制备高稳定性PEDOT/PSS水性分散体涂布液,通过激光粒度扫描仪、原子力显微镜、四探针测试仪等对水性分散体和薄膜进行表征,研究不同活性的硅烷偶联剂、pH调节剂及有机溶剂种类对PEDOT/PSS水性分散体的稳定性和薄膜性能的影响。结果表明:不同的硅烷偶联剂、有机胺或无机氨pH调节剂以及单醇或二元醇溶剂对所得水性分散体的稳定性、薄膜微相结构分布稳定性及薄膜导电性均有重要的影响,加入硅烷偶联剂VTMS及醇溶剂IPA后薄膜导电率提高1个数量级,加入5 mol/L氨水的水性分散体在50℃干燥箱中存放1周后导电率仍保持在200 S/cm以上,无机碱氨水对改善水性抗静电分散体的稳定性起着关键的作用。  相似文献   

7.
通过掺杂改性,在玻璃和柔性塑料衬底上采用旋涂法制备了高导电性和高透明性的PEDOT:PSS薄膜。然后以此为基础,研究了PEDOT:PSS为阳极的绿光OLED标准器件和黄光电致磷光器件性能。以CBP掺杂磷光材料(MPPZ)2Ir(acac)为发光层制备了柔性和平面OLED器件,考察了以ITO、PEDOT:PSS/玻璃、PEDOT:PSS/PET三种不同阳极器件的性能。实验结果表明,以PEDOT:PSS/玻璃阳极的器件启动电压为3.83 V,最大亮度可达18 632 cd/m2,最大电流效率可达21.61 cd/A,显示了PEDOT:PSS透明导电薄膜作为OLED阳极材料具有很大的发展潜力。  相似文献   

8.
水性聚氨酯分散液的研究进展   总被引:4,自引:0,他引:4  
姜其斌  贾德民 《中国胶粘剂》2004,13(2):50-53,59
评述了水性聚氨酯分散液的作用和重要性,综述了水性聚氨酯分散液的研究进展,对水性聚氨酯分散液的合成制备方法进行了归纳总结,认为在制备水性聚氨酯过程中,同时利用异氰酸酯基和不饱和双键的反应活性,形成互穿聚合物网络体系是目前合成制备水性聚氨酯分散液的主要思路和方法,最后,对水性聚氨酯分散液的应用发展趋势进行了展望。  相似文献   

9.
磺酸型水性聚氨酯分散液的合成与性能   总被引:1,自引:1,他引:1  
以聚己二酸丁二醇酯二醇、异佛尔酮二异氰酸酯、乙二胺为原料,由自制的乙二胺基乙磺酸钠为亲水性扩链剂,采用预聚体法合成磺酸型水性聚氨酯分散液。研究发现,磺酸型水性聚氨酯分散液固含量高(43.66%),稳定性大于6个月,且性能优于羧酸型水性聚氨酯分散液。  相似文献   

10.
以含有磺酸盐基团的聚酯二元醇和异佛二酮二异氰酸酯(IPDI)为主要原料,以二羟甲基丙酸(DMPA)为亲水单体,制备了一组不同组成的水性聚氨酯分散液,经力学性能测定和差示扫描量热法(DSC)分析,研究了亲水单体含量、软段相对分子质量及磺酸盐基团含量对分散液及其胶膜性能的影响。结果表明:软段中磺酸盐基团含量及软段相对分子质量对分散液胶膜的热力学性能和胶黏剂的初粘强度都有影响。  相似文献   

11.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   

12.
利用导电高分子聚(3,4-二氧乙基噻吩)/聚(对苯乙烯磺酸)(PEDOT/PSS)作保护剂,制备了银纳米颗粒,用UV-Vis和TEM对其进行了表征.结果表明,选择合适量的PEDOT/PSS保护剂可以得到大小分布较窄银纳米颗粒.  相似文献   

13.
We report on an anisotropic actuation of electroactive papers with a PEDOT/PSS coating in ambient air. PEDOT/PSS‐coated papers were prepared by wetting Manila papers with a concentrated PEDOT/PSS aqueous dispersion and subsequent drying. The electroactive papers displayed a contractile stress when an external voltage was applied, the magnitude and direction of the stress depending on the relative orientation of paper fibers and the loading direction of the coating. We also demonstrated that a butterfly‐like reversible bending motion of the PEDOT/PSS coated paper occurred when the voltage switching between on and off.

  相似文献   


14.
Daiki Wakizaka 《Polymer》2004,45(25):8561-8565
Multilayered ultrathin films of a conductive polymer, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by layer-by-layer deposition technique. These films were characterized by absorption spectroscopy, atomic force microscopy, cyclic voltammetry and potential step chronoamperometry. The PEDOT/PSS films were layered up with a bilayer thickness of 5 nm and the surface roughness of the films was improved after the ultrasonicated pretreatment of a PEDOT/PSS aqueous dispersion prior to the deposition. The ultrathin films thus obtained kept excellent diffusion constant of hole carriers, 5×10−10 cm2 s−1, as high as that of spin-cast films of PEDOT/PSS, indicating that the conducting polymer films are fabricated with nanometer-scale precision and act as a junction layer between the electrode and electrochemically active organic materials.  相似文献   

15.
ABSTRACT: Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers.  相似文献   

16.
With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.  相似文献   

17.
High-performance multifunctional textiles are highly demanded for human health-related applications. In this work, a highly conductive nonwoven fabric is fabricated by coating silver nanowires (AgNWs)/poly(3,4-ethyl enedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on a poly(m-phenylene isophthalamide) (PMIA) nonwoven fabric through a multistep dip coating process. The as-prepared PMIA/AgNWs/PEDOT:PSS composite nonwoven fabric shows an electrical resistance as low as 0.92 ± 0.06 Ω sq−1 with good flexibility. The incorporation of the PEDOT:PSS coating layer improves the adhesion between AgNWs and PMIA nonwoven fabric, and also enhances the thermal stability of the composite nonwoven fabric. Electromagnetic interference (EMI) shielding and Joule heating performances of the PMIA/AgNWs/PEDOT:PSS composite nonwoven fabric are also investigated. The results show that the average EMI shielding effectiveness (SE) of the single-layer nonwoven fabric in X-band is as high as 56.6 dB and retains a satisfactory level of SE after being washed, bended, and treated with acid/alkali solution and various organic solvents. The composite nonwoven fabric also exhibits low voltage-driven Joule heating performance with reliable heating stability and repeatability. It can be envisaged that the multifunctional PMIA/AgNWs/PEDOT:PSS nonwoven fabric with reliable stability and chemical robustness can be used in EMI shielding devices and personal thermal management products.  相似文献   

18.
ABSTRACT

This paper studied the fabrication of new hybrid-type poly(3,4- ethylene dioxythiophene) (PEDOT)/sulfonated graphene oxide electrode-based polymer actuator produced by film casting method. Sulfonated Poly(1,4-phenylene ether-ether sulfone) (SPS) ion-exchange polymer membrane-based ionic polymer composite actuators were fabricated using the different concentration of SGO. The characterization and actuation were demonstrated. By altering SGO concentration, four different SPS based membrane actuators were analyzed. The effects of SGO concentration on the morphology, proton conductivity, ion exchange capacity, and water uptake capability were studied. The maximum tip displacement and force by varying concentration of SGO were evaluated for the actuation performance.  相似文献   

19.
Nanocomposites of PEDOT:PSS with V2O5 nanoparticles are synthesized by simple physical mixing of the two with different weight percentages of the latter and their performance as supercapacitor electrode materials is verified. Best performance is obtained for an optimum weight percent of 16.8% of V2O5. The specific capacitance and specific energy of the composite with 16.8% V2O5 increases by more than two fold, with increase in specific power, as compared to that of pristine PEDOT:PSS device. This is attributed to increase in conductivity brought about by the presence of V2O5 nanoparticles, easier transportation and intimate contact of electrolyte ions with the nanolayers of V2O5 due to the intercalation of PEDOT:PSS between the layers, and additional redox reactions due to various oxidation states of vanadium element, besides redox electrolyte effects. This is further confirmed by the reduced ESR of the composite device as compared to that of pristine PEDOT:PSS device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号