首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y1.9Er0.1O3 and Y1.7Yb0.2Er0.1O3 nanocrystalline powders were prepared via a reverse-strike coprecipitation method using nitrates and ammonia as raw materials. The obtained powders were of cubic-phase structure of Y2O3 and the particle size was in the range of ∼60–80 nm. Strong red (4F9/24I15/2) and green (2H11/2/4S3/24I15/2) upconversion luminescence were observed in all the samples when excited with a 980-nm continuous wave diode laser. The possible upconversion mechanisms in Y1.9Er0.1O3 and Y1.7Yb0.2Er0.1O3 were discussed. Power studies indicated that two-photon processes are responsible for the green and red upconversion luminescence in these systems. The codoping of Yb3+ greatly enhanced the red (4F9/24I15/2) upconversion emission.  相似文献   

2.
Upconversion emission properties of γ-AlON:Yb3+,Tm3+ phosphors were investigated under single-wavelength diode laser excitation of 980 nm. Blue (479 nm) and red (653 nm) emission bands were observed which correspond to the transitions of 1G43H6 and 1G43F4 of Tm3+ ions, respectively. The upconversion spectra show a concentration-dependent luminescence intensity, reaching its peak at a concentration of 1.2 mol% Yb and 0.5 mol% Tm. Pump power dependence of the upconversion emission intensity ( P – I ) revealed that a two-photon process was involved in the blue and red emissions.  相似文献   

3.
Emission properties of 2.0 μm fluorescence and the energy transfer between Ho3+ and Tm3+ in 57PbO·25Bi2O3·18Ga2O3 (mol%) glass codoped with Ho3+ and Tm3+ were investigated. Cross-relaxation rates in Tm3+ increased approximately 5 times when the Tm2O3 concentration was increased from 1.0 to 1.5 wt%. Coefficients of the forward Tm3+→ Ho3+ energy transfer were about 15 times larger than those of the Tm3+← Ho3+ backward transfer. Analysis of the energy transfer and gain spectra indicated that the highest gain at the 2.0 μm wavelength region could be achieved from the glass with 1.5 wt% of Tm2O3 and 0.3 wt% of Ho2O3.  相似文献   

4.
5.
The fabrication of transparent Nd3+ ion-doped Lu2O3 ceramics is investigated by pressureless sintering under a flowing H2 atmosphere. The starting Nd-doped Lu2O3 nanocrystalline powder is synthesized by a modified coprecipitant processing using a NH4OH+NH4HCO3 mixed solution as the precipitant. The thermal decomposition behavior of the precipitate precursor is studied by thermogravimetric analysis and differential thermal analysis. After calcination at 1000°C for 2 h, monodispersed Nd3+:Lu2O3 powder is obtained with a primary particle size of about 40 nm and a specific surface area of 13.7 m2/g. Green compacts, free of additives, are formed from the as-synthesized powder by dry pressing followed by cold isostatic pressing. Highly transparent Nd3+:Lu2O3 ceramics are obtained after being sintered under a dry H2 atmosphere at 1880°C for 8 h. The linear optical transmittance of the polished transparent samples with a 1.4 mm thickness reaches 75.5% at the wavelength of 1080 nm. High-resolution transmission electron microscopy observations demonstrate a "clear" grain boundary between adjacent grains. The luminescent spectra showed that the absorption coefficient of the 3 at.% Nd-doped Lu2O3 ceramic at 807 nm reached 14 cm−1, while the emission cross section at 1079 nm was 6.5 × 10−20 cm2.  相似文献   

6.
A novel co-precipitation process was adopted for the preparation of highly sinterable europium-doped lutetia powders using ammonium hydroxide (NH3·H2O) and ammonium hydrogen carbonate (NH4HCO3) as the mixed precipitant. The resultant powders calcined at 1000°C for 2 h showed good dispersity and excellent sinterability. Highly transparent polycrystalline lutetia ceramics with a relative density of ∼99.9% were fabricated by pressureless sintering in flowing H2 atmosphere at 1850°C for 6 h without any additives. The average grain sizes of the transparent material were estimated to be 50–60 μm. Optical in-line transmittance in the visible wavelength region for Lu2O3 ceramics (1 mm in thickness) reached 80%. The luminescence and decay behavior of the obtained transparent plate and the corresponding nanophosphors were also investigated.  相似文献   

7.
α-SiAlONs with equiaxed and elongated microstructures stabilized with Y2O3 and Lu2O3 were produced by hot pressing, and the phase structure and room- and high-temperature mechanical properties were assessed. Additional liquid added to the starting composition in the form of 5 wt% rare-earth monosilicate resulted in the formation of elongated microstructures and improvements in room-temperature strength and fracture toughness. The elongated grain growth was promoted by the additional liquid phase, which crystallized to form a secondary grain-boundary phase thought to be J ' (Re4Si2– x Al x O7+ x N2– x ). For the equiaxed and the elongated samples, those sintered with Lu2O3 showed higher hardness than the comparable Y2O3-sintered materials, and, at elevated temperature, the strength retention of the elongated Lu2O3 SiAlON was much higher than that of the Y2O3 sample, which was attributed to properties of the residual grain-boundary phase associated with the difference in the cationic radius of the stabilizing cation.  相似文献   

8.
Single-mode semiconductor pumps have failed to keep pace with the increasing power requirements of Er-doped fiber amplifiers (EDFAs), so there is a need for high-powered 980-nm sources. Yb3+-doped tapered fiber lasers can provide high-power output by conversion of a low-brightness, high-powered, 920-nm, multimode broad stripe laser diode to a high-brightness, 980-nm, single-mode output. The tapered fiber laser requires a fiber with high numerical aperture (NA) (>0.4), a rectangular core, and good Yb3+ spectroscopy for efficient operation. CVD-based fiber fabrication methods are incapable of delivering fibers with an NA > ∼0.3 or with good efficiency at 980 nm so a new method of high-NA fiber fabrication was developed. The core glass composition is critical for maintaining a high-NA fiber with good power extraction while avoiding phase separation, loss, and clustering. The SiO2 level controlled the NA and interdiffusion between core and clad, while the Al2O3/La2O3 ratio controlled phase separation. A La2O3-Al2O3-SiO2 glass was developed that is compatible with a pure SiO2 cladding glass and has a laser slope efficiency of 70% at 980 nm. The optimized fiber composition yielded 450 mW of 980-nm power in a single-mode fiber.  相似文献   

9.
The electromechanical properties of PbTiO3 ceramics, modified by substitution of Sm or Gd + Nd (same average atomic radius as Sm) for Pb, were studied in the range of 6% to 14% substitution. The modified PbTiO3 ceramics were stable, and the Curie temperature decreased linearly over this composition range. The 10% Sm composition had a large anisotropy in the coupling factor ratio, k t / k p , and a similar, but weaker, effect developed for 12% (1/2 Gd + 1/2 Nd). This indicates that other than average ion size may influence the electromechanical coupling factor ratio.  相似文献   

10.
Novel microcomposite powders, consisting of inert cores (αAL-Al2O3) surrounded by reactive cement-based coatings (CaAl2O4), were synthesized by a modified Pechini process. The evolution of the crystalline CaAl2O4 phase during calcination was studied using multiple analytical techniques, including DRIFTS,13C and 27AlMAS FT-NMR, and XRD, for both pure CaAl2O4 and CaAl2O4-coated Al2O3 precursor powders. In both powders, decomposition proceeded via hydrocarbon chain scission and removal of ester groups at low temperatures ( T < 450°C), followed by the formation of inorganic carbonates at higher temperatures ( T > 450°C). These decomposition processes were accelerated by the underlying Al2O3 cores. Transmission electron microscopy (TEM) of the fully calcined powders showed that the inert αAL-Al2O3 particles were surrounded by relatively uniform CaAl2O4 coatings ranging in thickness from approximately 10 to 100 nm.  相似文献   

11.
Emission properties of PbO–Bi2O3–Ga2O3 glasses doped with Ho3+ were investigated for fiber-optic amplification at the 1.18 μm wavelength region. When the glasses were doped with Ho3+ ions only, there was a weak emission at 1.18 μm with a lifetime of ∼200 μs. However, when Yb3+ ions were codoped, the lifetime of the 1.18 μm emission increased to 630 μs together with a significant increase in intensity. A similar enhancement in the intensity and lifetimes was realized for the 2.05 μm emission. These effects are due to energy transfer from the Yb3+:2F5/2 to the Ho3+:5I6 level. Devitrification of the ternary PbO–Bi2O3–Ga2O3 glasses was efficiently suppressed by adding 10 mol% GeO2. Optimum Ho3+ concentration was ∼0.4 mol%, whereas Yb3+ ions can be added up to the solubility limit.  相似文献   

12.
13.
The synthesis and characterization of yttrium hydroxyl carbonate (Y(OH)CO32−) and yttrium nitrate hydroxide hydrate (Y(OH)NO3H2O) precursor materials as well as Y2O3 nanoparticles are reported. The resultant precursor particle size is about 10–12 nm with a narrow size distribution by the enzymatic decomposition method, whereas the particle size was smaller than those acquired by the homogeneous and alkali precipitation methods. The formation of Y(OH)CO32− and Y(OH)NO3H2O species was also evident from the fourier-transform infrared spectrometry (FT-IR) analysis. Precipitated Y(OH)CO32− precursors have an amorphous nature whereas Y(OH)NO3H2O precursors have a crystalline nature, which was manifested from the XRD analysis. Moreover, precipitated Y(OH)NO3H2O precursors were found in the agglomerated form and Y(OH)CO32− was established in the monodispersed form, as determined from the FE-SEM, TEM and DLS measurements. It was demonstrated that calcination of precursor materials at 900°C eventually removed the inorganic anions from the precursors and consequently produced crystalline Y2O3 nanoparticles, which was evident from the XRD and FT-IR analysis. The EDS analysis confirms Er3+ doping in the Y2O3 nanoparticles. The morphology and the size of the Y2O3 nanoparticles are almost unchanged before and after the calcination.  相似文献   

14.
Nanocrystalline Sm2O3 and Sm2O3–MgO powders have been prepared by spray pyrolysis of aqueous precursor solutions containing citric acid as a complexant. Synthesized powders consist of hollow spheres with thin shells. The two-phase samples exhibit an improved microstructural stability compared with pure Sm2O3. The microstructure before and after various heat treatments has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, and X-ray diffraction.  相似文献   

15.
Up to 3.3 wt% nitrogen can be incorporated into Na2O-B2O3 glass melts. The melting procedure is described, and structure models are given. In contrast to N-containing silicate glasses, the borate glasses were transparent; however, micrographs of their fracture surfaces showed some crystallinity. Properties were determined as a function of the N and Na2O contents of the glasses. Compared with N-containing silicate glasses, the properties of borate glasses are much less changed by the nitrogen introduced.  相似文献   

16.
Thermal expansion of CeO2, Ho2O8, and Lu2O3 was determined from 100° to 300°K by a back-reflection X-ray technique. The variation of thermal expansion with temperature is the same as that of specific heat for CeO2 and Ho2O3; these oxides obey the Grueneisen model of thermal expansion in the temperature range studied.  相似文献   

17.
The oxidation behavior and effect of oxidation on room-temperature flexural strength were investigated for hot-pressed Si3N4 ceramics, with 3.33 and 12.51 wt% Lu2O3 additives, exposed to air at 1400° and 1500°C for up to 200 h. Parabolic oxidation behavior was observed for both compositions. The oxidation products consisted of Lu2Si2O7 and SiO2. The Lu2Si2O7 grew out of the surface silicate in preferred orientations. The morphology of oxidized surfaces was dependent on the amount of additive; Lu2Si2O7 grains in the 3.33 wt% composition appeared partially in a needlelike type, compared with a more equiaxed type exhibited in the 12.51 wt% case. The high resistance to oxidation shown for both compositions was attributed to the extensive amounts of crystalline, refractory secondary phases formed during the sintering process. Moreover, after 200 h of oxidation at 1400° and 1500°C, the strength retention displayed by the two compositions was 93%–95% and 85%–87%, respectively. The strength decrease was associated with the formation of new defects at the interface between the oxide layer and the Si3N4 bulk.  相似文献   

18.
Absorption and emission properties of Yb3+ in borophosphate glasses of the (55- x )P2O5· x B2O3·10ZnO·10BaO·20SrO·5Nb2O5·1Yb2O3 series ( x = 0, 11, 22, 33, 44, and 55) have been investigated. To avoid the problem arising from the radiation trapping effect, the reciprocity method is employed to calculate the emission cross section. It is found that the spectroscopic properties of Yb3+ in our borophosphate glasses are sensitive to the Yb3+ site environments. In addition, the laser performance of the Yb3+-doped borophosphate glasses has been assessed. And the borophosphate glasses with values of x = 33 and 55 appear to be superior to the phosphate glasses as Yb-grain media.  相似文献   

19.
The phase equilibrium relations in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3 were examined. Each system has two stable binary compounds. A 3:s molar ratio garnet-type compound exists in both systems. The 1:1 distorted perovskite structure is stable in the system Gd2O3-Fe2O3 but only metastable in the system Y2O3-AI2O3. This interesting example of metastable formation and persistence of a compound with ions of high Z/r values explains the discrepancies in the literature on the structure of the composition YA1O3. A new 2:1 molar ratio cubic phase has been found in the system Y2O3-A12O3. Since silicon can be completely substituted for aluminum in this compound, the aluminum ions are presumably in fourfold coordination.  相似文献   

20.
In the binary system PbO–LazO3 only one compound, 4PbO.La2O3, exists; it is flanked by two eutectics. The structure of the compound, although of lower symmetry, is intimately related to the C modification of the rare earths. Below 800° to 1000°C, metastable solid solutions are formed from oxide mixtures coprecipitated from mixed solutions of the nitrates, the cubic parameter a = 5.66 A, if extrapolated to pure La2O3, corresponding to half the a parameter of the C form of La2O3. The solid solutions existing between the compositions La2O3–2Pb0 and pure La2O3 have a cubic face–centered lattice and obey Vegard's rule. The systems of PbO with Sm2O3 and Gd2O8 are quite similar to that with La2O3. The compound Sm2O3.4Pb0 decomposes at 1000°C with evaporation of PbO; Sm2O3 remains in the B modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号