首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we study re-entrant flow shop scheduling problems with the objective of minimizing total completion time. In a re-entrant scheduling problem, jobs may visit some machines more than once for processing. The problem is NP-hard even for machine number m=2. A heuristic algorithm is presented to solve the problem, in which an effective k-insertion technique is introduced as the improvement strategy in iterations. Computational experiments and analyses are performed to give guidelines of choosing parameters in the algorithm. We also provide a lower bound for the total completion time of the optimal solution when there are only two machines. Objective function values of the heuristic solutions are compared with the lower bounds to evaluate the efficiency of the algorithm. For randomly generated instances, the results show that the given heuristic algorithm generates solutions with total completion times within 1.2 times of the lower bounds in most of the cases.  相似文献   

2.
We consider a multi-agent scheduling problem on a single machine in which each agent is responsible for his own set of jobs and wishes to minimize the total weighted completion time of his own set of jobs. It is known that the unweighted problem with two agents is NP-hard in the ordinary sense. For this case, we can reduce our problem to a Multi-Objective Shortest-Path (MOSP) problem and this reduction leads to several results including Fully Polynomial Time Approximation Schemes (FPTAS). We also provide an efficient approximation algorithm with a reasonably good worst-case ratio.  相似文献   

3.
The identical parallel machine scheduling problem with the objective of minimizing total weighted completion time is considered in the online setting where jobs arrive over time. An online algorithm is proposed and is proven to be (2.5–1/2m)-competitive based on the idea of instances reduction. Further computational experiments show the superiority over other algorithms in the average performance.  相似文献   

4.
In many management situations multiple agents pursuing different objectives compete on the usage of common processing resources. In this paper we study a two-agent single-machine scheduling problem with release times where the objective is to minimize the total weighted completion time of the jobs of one agent with the constraint that the maximum lateness of the jobs of the other agent does not exceed a given limit. We propose a branch-and-bound algorithm to solve the problem, and a primary and a secondary simulated annealing algorithm to find near-optimal solutions. We conduct computational experiments to test the effectiveness of the algorithms. The computational results show that the branch-and-bound algorithm can solve most of the problem instances with up to 24 jobs in a reasonable amount of time and the primary simulated annealing algorithm performs well with an average percentage error of less than 0.5% for all the tested cases.  相似文献   

5.
The blocking flow shop scheduling problem has found many applications in manufacturing systems. There are a few exact methods for solving this problem with different criteria. In this paper, efforts will be made to optimize the total completion time criterion for this problem. We present two mixed binary integer programming models, one of which is based on the departure times of jobs from machines, and the other is based on the idle and blocking times of jobs. An initial upper bound generator and some lower bounds and dominance rules are also developed to be used in a branch and bound algorithm. The algorithm solves 17 instances of the Taillard's benchmark problem set in less than 20 min.  相似文献   

6.
We investigate the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical machines at each stage. The objective is to find a schedule that minimizes the sum of weighted completion times of the jobs. This problem has been proven to be NP-hard. In this paper, an integer programming formulation is constructed for the problem. A new Lagrangian relaxation algorithm is presented in which precedence constraints are relaxed to the objective function by introducing Lagrangian multipliers, unlike the commonly used method of relaxing capacity constraints. In this way the relaxed problem can be decomposed into machine type subproblems, each of which corresponds to a specific stage. A dynamic programming algorithm is designed for solving parallel identical machine subproblems where jobs may have negative weights. The multipliers are then iteratively updated along a subgradient direction. The new algorithm is computationally compared with the commonly used Lagrangian relaxation algorithms which, after capacity constraints are relaxed, decompose the relaxed problem into job level subproblems and solve the subproblems by using the regular and speed-up dynamic programming algorithms, respectively. Numerical results show that the new Lagrangian relaxation method produces better schedules in much shorter computation time, especially for large-scale problems.  相似文献   

7.
We consider a class of weighted linear scheduling problems with respect to precedence constraints and show by a short proof that the greedy algorithm performs optimally whenever the precedence constraints are N-free. The setup minimization problem for N-free ordered sets is a special case. Thus our approach generalizes and simplifies, e.g., the results of Rival (1983).  相似文献   

8.
9.
In this paper, three scheduling problems with deteriorating jobs to minimize the total completion time on a single machine are investigated. By a deteriorating job, we mean that the processing time of the job is a function of its execution start time. The three problems correspond to three different decreasing linear functions, whose increasing counterparts have been studied in the literature. Some basic properties of the three problems are proved. Based on these properties, two of the problems are solved in O(nlogn) time, where n is the number of jobs. A pseudopolynomial time algorithm is constructed to solve the third problem using dynamic programming. Finally, a comparison between the problems with job processing times being decreasing and increasing linear functions of their start times is presented, which shows that the decreasing and increasing linear models of job processing times seem to be closely related to each other.  相似文献   

10.
We consider an uncertain single-machine scheduling problem, in which the processing time of a job can take any real value on a given closed interval. The criterion is to minimize the total weighted flow time of the n jobs, where there is a weight associated with a job. We calculate a number of minimal dominant sets of the job permutations (a minimal dominant set contains at least one optimal permutation for each possible scenario). We introduce a new stability measure of a job permutation (a stability box) and derive an exact formula for the stability box, which runs in O(n log n) time. We investigate properties of a stability box. These properties allow us to develop an O(n2)-algorithm for constructing a permutation with the largest volume of a stability box. If several permutations have the largest volume of a stability box, the developed algorithm selects one of them due to a simple heuristic. The efficiency of the constructed permutation is demonstrated on a large set of randomly generated instances with 10≤n≤1000.  相似文献   

11.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

12.
13.
In this paper, we consider a single-machine scheduling problem with release dates. The aim is to minimize the total weighted completion time. This problem is known to be strongly NP-hard. We propose two new lower bounds that can be, respectively, computed in O(n2) and in O(nlogn) time where n is the number of jobs. We prove a sufficient and necessary condition for local optimality, which can also be considered as a priority rule. We present an efficient heuristic using such a condition. We also propose some dominance properties. A branch-and-bound algorithm incorporating the heuristic, the lower bounds and the dominance properties is proposed and tested on a large set of instances.  相似文献   

14.
We study a two-agent scheduling problem in a two-machine permutation flowshop with learning effects. The objective is to minimize the total completion time of the jobs from one agent, given that the maximum tardiness of the jobs from the other agent cannot exceed a bound. We provide a branch-and-bound algorithm for the problem. In addition, we present several genetic algorithms to obtain near-optimal solutions. Computational results indicate that the algorithms perform well in either solving the problem or efficiently generating near-optimal solutions.  相似文献   

15.
This paper is about scheduling parallel jobs, i.e. which can be executed on more than one machine at the same time. Malleable jobs is a special class of parallel jobs. The number of machines a malleable job is executed on may change during its execution.In this work, we consider the NP-hard problem of scheduling malleable jobs to minimize the total weighted completion time (or mean weighted flow time). For this problem, we introduce the class of “ascending” schedules in which, for each job, the number of machines assigned to it cannot decrease over time while this job is being processed.We prove that, under a natural assumption on the processing time functions of jobs, the set of ascending schedules is dominant for the problem. This result can be used to reduce the search space while looking for an optimal solution.  相似文献   

16.
17.
We study the problem of minimizing total completion time in the two-machine flow shop with exact delay model. This problem is a generalization of the no-wait flow shop problem which is known to be strongly NP-hard. Our problem has many applications but little results are given in the literature so far. We focus on permutation schedules. We first prove that some simple algorithms can be used to find the optimal schedules for some special cases. Then for the general case, we design some heuristics as well as metaheuristics whose performance are shown to be effective by computational experiments.  相似文献   

18.
Deteriorating jobs scheduling problems can be found in many practical situations. Due to the essential complexity of the problem, most of the research focuses on the single-machine setting. In this paper, we address a total completion time scheduling problem in the mm-machine permutation flow shop. First of all, we propose a dominance rule and an efficient lower bound to speed up the searching for the optimal solution. Second, several deterioration patterns, which include an increasing, a decreasing, a constant, a V-shaped, and a ΛΛ-shaped one, are investigated in order to study the impact of the deterioration rates. Finally, the performance of some well-known heuristics under various deterioration patterns is evaluated.  相似文献   

19.
A heuristic for job shop scheduling to minimize total weighted tardiness   总被引:6,自引:0,他引:6  
This paper considers the job shop scheduling problem to minimize the total weighted tardiness with job-specific due dates and delay penalties, and a heuristic algorithm based on the tree search procedure is developed for solving the problem. A certain job shop scheduling to minimize the maximum tardiness subject to fixed sub-schedules is solved at each node of the search tree, and the successor nodes are generated, where the sub-schedules of the operations are fixed. Thus, a schedule is obtained at each node, and the sub-optimum solution is determined among the obtained schedules. Computational results on some 10 jobs and 10 machines problems and 15 jobs and 15 machines problems show that the proposed algorithm can find the sub-optimum solutions with a little computation time.  相似文献   

20.
Zhao et al. (2009) [24] study the m identical parallel-machine scheduling problem with rate-modifying activities to minimize the total completion time. They show that the problem can be solved in O(n2m+3) time. In this study we extend the scheduling environment to the unrelated parallel-machine setting and present a more efficient algorithm to solve the extended problem. For the cases where the rate-modifying rate is (i) larger than 0 and not larger than 1, and (ii) larger than 0, we show that the problem can be solved in O(nm+3) and O(n2m+2) time, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号