首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
任何板块都存在一个由小长大的过程。微地块(微板块)有时是大板块的前身,微地块的起源、生长、夭折、消亡和残留过程对研究板块构造具有重要意义。据其组成,微地块可划分为微陆块、微洋块、微幔块。本文以太平洋、印度洋和大西洋中的微地块为例,系统总结了洋脊增生系统、俯冲消减系统、深海板内系统、伸展裂解系统、碰撞造山系统5种构造环境下的微地块特征,并据此首次进行了成因分类,提出拆离微地块、裂生微地块、转换微地块、延生微地块、跃生微地块、残生微地块、增生微地块、碰生微地块和拆沉微幔块9种类型。对不同类型微地块边界进行了系统界定,并对其成因进行了系统讨论。这些微地块边界类型,包括活动的或死亡的拆离断层、俯冲带、洋中脊、转换断层、破碎带、切割岩石圈的断裂、假断层、洋内汇聚带、叠接扩张中心、非叠接扩张中心、洋脊断错等,其成因的关键研究在于对三节点稳定性进行分析。洋内或洋缘微地块研究,不仅为开展深海大洋精细化构造分析和板块重建工作提供参考,而且对解释大陆内部一些微地块成因具有启发性,可丰富大陆造山带、陆内、板内、幔内和陆缘构造的研究内容,使得造山带演化、板内变形和地幔过程研究更为精细化,甚至推广到早前寒武纪的前板块构造机制研究。  相似文献   

2.
The Gorringe Bank corresponds to an upper mantle peridotite ridge enclosing a 500-m thick/ 50-km long laccolith-like body of gabbro, locally cut and poorly covered by tholeiitic rocks. Strain and kinematic analysis of orientated gabbros and peridotites sampled during the GORRINGE diving cruise (1996) provides new kinematic constraints on extensional high-temperature deformation recorded at deep levels during stretching, near an accreting centre axis of a mantle-dominant oceanic lithosphere. It is argued that the Gorringe Bank lithosphere formed at an oceanic ultra-slow, N010°–020°-trending accreting centre, mostly by passive tectonic denudation of the mantle, without any synchronous large magmatism. This peculiar lithosphere may be representative of the Iberia oceanic domain located between the continent and the J anomaly ridge, which likely marks the beginning of true spreading at an oceanic spreading ridge.  相似文献   

3.
A group of low‐angle normal faults developed in banded gabbro of Moa Ophiolite, Cuba. The dark gabbro was cut into puddings by several normal faults, while light gabbro was just swelling in layer thickness. In Hongliuhe ophiolite at eastern segment of South Tien Shan Suture Zone in China, the extensional deformation concentrates on fine cumulus gabbro which is typically mylonitized. Abundant structural features were discovered in HLH ophiolite such as S‐C foliation, C’ foliation, extensional crenulation cleavage, small toughness normal fault, low‐angle normal faults and high‐angle normal faults. According to the above tectonic phenomenon from the ophiolite belts in Cuba and China, we will get the conclusion: the maximum principal compressive stress (b1) is vertical to cumulus bedding, and the maximum tensile stress (b3) is paralleling to cumulus bedding. Considering of the above evidence, the extensional tectonic event should developed at mid‐ocean ridge. Due to seafloor spreading, the maximum tensile stress is paralleling to cumulus layer, and extensional tectonic is kept in cumulus gabbro. In this way, normal faults developed in dark gabbro, while brittle‐ductile extensional developed in light gabbro. A large number of domes, folds paralleling to ocean ridge and detachment faults represented by low angle normal fault were discovered near ocean ridge in Indian Ocean and Atlantic Ocean. In this way, materials from deep oceanic lithosphere (e.g. gabbro, mantle peridotite) outcrop at the crust surface of ocean basin. The above evidences from China and Cuba are consistent with extensional tectonic and metamorphic core complex from slowly and super‐slowly spreading Indian Ocean and Atlantic Oceanic lithosphere based on ODP. Therefore, extensional deformation in the ophiolite belt is of significant meaning for clarifying the formation process and mechanism of ancient oceanic basin.  相似文献   

4.
The interaction of the Mid-Atlantic Ridge with the North Atlantic Mantle Plume has produced a magmatic plateau centred about Iceland. The crust of this plateau is 30 km thick on average. This abnormal thickness implies that, unlike other slow-spreading ridges, addition of magmatic material to the crust is not balanced by crustal stretching. The thermal effect of the plume also reduces the strength of the lithosphere. Both mechanisms affect the rifting process in Iceland. A structural review, including new field observations, demonstrates that the structure of the Iceland plateau differs from that of other slow-spreading oceanic ridges. Lithospheric spreading is currently accommodated in a 200 km wide deformation strip, by the development of a system of half-grabens controlled by growth faults. Similar extinct structures, with various polarities, are preserved in the lava pile of the Iceland plateau. These structures are identified as lithospheric rollover anticlines that developed in hanging walls of listric faults. We introduce a new tectonic model of accretion, whereby the development of the magmatic plateau involved activation, growth and decay of a system of growth fault/rollover systems underlain by shallow magma chambers. Deactivation of a given extensional system, after a lifetime of a few My, was at the expense of the activation of a new, laterally offset, one. Correspondingly, such systems formed successively at different places within a 200 km wide diffuse plate boundary. Unlike previous ones, this new model explains the lack of an axial valley in Iceland, the dip pattern of the lava pile, the complex geographical distribution of ages of extinct volcanic systems and the outcrops of extinct magma chambers.  相似文献   

5.
《Gondwana Research》2016,29(4):1329-1343
Continental rifting to seafloor spreading is a continuous process, and rifting history influences the following spreading process. However, the complete process is scarcely simulated. Using 3D thermo-mechanical coupled visco-plastic numerical models, we investigate the complete extension process and the inheritance of continental rifting in oceanic spreading. Our modeling results show that the initial continental lithosphere rheological coupling/decoupling at the Moho affects oceanic spreading in two manners: (1) coupled model (a strong lower crust mechanically couples upper crust and upper mantle lithosphere) generates large lithospheric shear zones and fast rifting, which promotes symmetric oceanic accretion (i.e. oceanic crust growth) and leads to a relatively straight oceanic ridge, while (2) decoupled model (a weak ductile lower crust mechanically decouples upper crust and upper mantle lithosphere) generates separate crustal and mantle shear zones and favors asymmetric oceanic accretion involving development of active detachment faults with 3D features. Complex ridge geometries (e.g. overlapping ridge segments and curved ridges) are generated in the decoupled models. Two types of detachment faults termed continental and oceanic detachment faults are established in the coupled and decoupled models, respectively. Continental detachment faults are generated through rotation of high angle normal faults during rifting, and terminated by magmatism during continental breakup. Oceanic detachment faults form in oceanic crust in the late rifting–early spreading stage, and dominates asymmetric oceanic accretion. The life cycle of oceanic detachment faults has been revealed in this study.  相似文献   

6.
The middle part of the Central Indian Ridge (MCIR) between 8°S and 18°S is representative of mid-ocean ridges in the Indian Ocean but has not previously been systematically surveyed. Here we present results from the first high-resolution mapping survey over both on- and off-axis sections of the MCIR including multibeam bathymetry, magnetics, hydrocasting, and seabed sampling. The 700-km-long MCIR consists of six first-order segments that are offset by > 30 km along well-developed transform faults. Three of the first-order segments are further divided into seven second-order segments with < 30 km offset along non-transform discontinuities. We have recognized for the first time 11 prominent ocean core complexes (OCCs). These occur at nearly all segment ends, corresponding to an occurrence every 60 km of the surveyed ridge. Seafloor spreading model studies using magnetic reversals show that the MCIR is a slow-spreading ridge with average full opening rates ranging from 33.7 to 45.1 mm/yr, increasing from north to south. The highly curved and intermittent axial ridge geometry, rugged flank fabric, variation in the depth and width of the middle valley, and the frequent occurrences of ocean core complexes and non-transform discontinuities demonstrate that asymmetric accretionary processes are dominant along the ridge. The spreading rate symmetry combined with morphotectonic features, reveal that the MCIR segments developed mainly via tectonic extension with little magmatism. Segments with asymmetric accretion controlled by tectonic extension makes up ~ 96% of the MCIR, whereas symmetric accretion controlled by robust magmatism make up < 4%. Hydrothermal plumes with high methane concentrations occur frequently over the OCCs. This finding indicates that abundant OCCs exposed by detachment faults lead to extensive hydrothermal circulation at off-axis areas and that detachment faults are the primary fluid path for hydrothermal fluid circulation at off-axis regions. Serpentinization of mantle-derived rock at OCCs may be one of the major sources of heat and methane in off-axis areas.  相似文献   

7.
ABSTRACT

We construct a complete density transection based on the velocity structures across the Zhongsha Bank in the South China Sea. Gravity modelling of the lateral density contrasts between tectonic units helps us to determine the structural attributes and boundaries between continental blocks and deep basins. The configuration of the continent–ocean boundary (COB) around the Zhongsha Bank is mapped based on the gravity/magnetic anomaly and crustal structures. A low-density mantle is found beneath the Zhongsha Bank and the oceanic basins, and this mantle is associated with the high heat-flow background. The COB orientation is northeast-east in the north of the bank, with faulted linear structures. In further southeast, where there is a more intact crust, the COB orientation changed to north-northeast. The reconstructed density model and gravity/magnetic map indicate that the Zhongsha Bank is conjugated with the Liyue Bank by a rifted basin, where the crust had experienced localized deformation before the seafloor spreading. Because of the insufficient magmatism in the oceanic basin, the spreading ridge propagates into the weakened continental lithosphere between the two continental blocks, thus completely separating the Zhongsha Bank from the Liyue Bank. Seafloor spreading ridge jumps within the South China Sea may also be affected by the heterogeneous lithosphere beneath the continental blocks and oceanic basins.  相似文献   

8.
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction.A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859–861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults.The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding.  相似文献   

9.
Gravity and bathymetry data have been extensively used to infer the thermo-mechanical evolution of different segments of the oceanic lithosphere. It is now understood that magmatic fluid processes involved in the accretion of oceanic crust are spatially complex and episodic. The nature of these processes which are in general nonlinear, can be described using fractal analysis of marine geophysical data. Fractal analysis has been carried out for gravity and bathymetry profiles over the aseismic Chagos-Laccadive Ridge and the spreading Carlsberg Ridge. The Iterated Function Systems (IFS) have been used to generate synthetic profiles of known dimension (D) and these are compared with the observed profiles. The D for the data sets are in the range of 1–1.5. The D for gravity profiles is less than those of bathymetry and the D for gravity and bathymetry over spreading ridge is higher than the aseismic ridge. The low fractal dimension indicates that the processes generating them are of low dimensional dynamical systems.  相似文献   

10.
近年来, 一种新的海底扩张模式引起了广大科学家的重视.它与一般的岩浆型洋中脊扩张不同, 属于一种非岩浆或贫岩浆的海底扩张方式, 扩张作用主要通过拆离断层的滑移来实现.拆离断层使下盘的深部洋壳或上地幔岩石出露到海底, 形成了大洋核杂岩, 通常表面呈现龟背似的波瓦状穹隆, 或称巨型窗棱构造.从拆离断层、大洋核杂岩等基本概念入手, 综述这种新型海底扩张模式的特征, 总结归纳大洋核杂岩的分布状况及识别手段, 探讨其地质意义以及对海底热液活动、成矿的积极影响.   相似文献   

11.
杨巍然 《地学前缘》2004,11(2):525-532
湖北郧县王家庄有两期脉体 ,早期为纤维状石英脉 ,总体呈北北东向分布 ,平行脉壁有一中间面使其对称分布 ,显示张性裂隙持续发育过程 ;与之垂直的横向压性裂隙将它“错开”。形貌上酷似板块构造的大洋中脊和转换断层。晚期云母脉叠置在上述两组裂隙之上 ,并使原来裂隙性质发生变化。这些特征与区域应力场分布 ,特别是与两郧断裂的演化息息相关。根据分形理论 ,将王家庄石英云母脉与板块构造进行对比 ,一方面从微观的角度证实了板块构造一些基本观点的合理性。同时从微观信息得到深入研究板块构造的一些新启示 :对板块形成机制不要局限于软流圈对流 ,而应从更深层次研究地幔物质运动规律 ;要将大陆和大洋作为一个整体研究全球应力场分布规律与构造演化历史 ,其中转换断层是联系大陆和大洋的纽带 ;加强RRR型三联点研究 ,它是研究深部 (地幔 )物质运动和上部 (地壳、岩石圈 )构造应力场相互关系的重要窗口  相似文献   

12.
Arc–continent collision is a key process of continental growth through accretion of newly grown magmatic arc crust to older continental margin. We present 2D petrological–thermo-mechanical models of arc–continent collision and investigate geodynamic regimes of this process. The model includes spontaneous slab bending, dehydration of subducted crust, aqueous fluid transport, partial melting of the crustal and mantle rocks and magmatic crustal growth stemming from melt extraction processes. Results point to two end-member types of subsequent arc–continent collisional orogens: (I) orogens with remnants of accretion prism, detached fragments of the overriding plate and magmatic rocks formed from molten subducted sediments; and (II) orogens mainly consisting of the closed back-arc basin suture, detached fragments of the overriding plate with leftovers of the accretion prism and quasi insignificant amount of sediment-derived magmatic rocks. Transitional orogens between these two endmembers include both the suture of the collapsed back-arc basin and variable amounts of magmatic production. The orogenic variability mainly reflects the age of the subducting oceanic plate. Older, therefore colder and denser oceanic plates trigger subduction retreat, which in turn triggers necking of the overriding plate and opening of a backarc basin in which new oceanic lithosphere is formed from voluminous decompression melting of the rising hot asthenosphere. In this case, subducted sediments are not heated enough to melt and generate magmatic plumes. On the other hand, young and less dense slabs do not retreat, which hampers opening of a backarc basin in the overriding plate while subducted sediments may reach their melting temperature and develop trans-lithospheric plumes. We have also investigated the influences of convergence rate and volcanic/plutonic rocks' ratio in newly forming lithosphere. The predicted gross-scale orogenic structures find similarities with some natural orogens, in particular with deeply eroded orogens such as the Variscides in the Bohemian Massif.  相似文献   

13.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   

14.
The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution, resources, energy potential of “the Belt and Road” development, is the cut-in point of the current Earth science community to serve urgent national needs. This paper mainly discusses the following key tectonic problems in the West Pacific and North Indian oceans and their ocean-continent connection zones (OCCZs): 1. modern marine geodynamic problems related to the two oceans. Based on the research and development needs to the two oceans and the ocean-continent transition zones, this item includes the following questions. (1) Plate origin, growth, death and evolution in the two oceans, for example, 1) The initial origin and process of the triangle Pacific Plate including causes and difference of the Galapagos and West Shatsky microplates; 2) spatial and temporal process, present status and trends of the plates within the Paleo- or Present-day Pacific Ocean to the evolution of the East Asian Continental Domain; 3) origin and evolution of the Indian Ocean and assembly and dispersal of supercontinents. (2) Latest research progress and problems of mid-oceanic ridges: 1) the ridge-hot spot interaction and ridge accretion, how to think about the relationship between vertical accretion behavior of thousands years or tens of thousands years and lateral spreading of millions years at 0 Ma mid-oceanic ridges; 2) the difference of formation mechanisms between the back-arc basin extension and the normal mid-oceanic ridge spreading; 3) the differentials between ultra-slow dian Ocean and the rapid Pacific spreading, whether there are active and passive spreading, and a push force in the mid-oceanic ridge; 4) mid-oceanic ridge jumping and termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; 5) interaction of mantle plume and mid-oceanic ridge. (3) On the intra-oceanic subduction and tectonics: 1) the origin of intra-oceanic arc and subduction, ridge subduction and slab window on continental margins, transform faults and transform-type continental margin; 2) causes of the large igneous provinces, oceanic plateaus and seamount chains. (4) The oceanic core complex and rheology of oceanic crust in the Indian Ocean. (5) Advances on the driving force within oceanic plates, including mantle convection, negative buoyancy, trench suction and mid-oceanic ridge push, is reviewed and discussed. 2. The ocean-continent connection zones near the two oceans, including: (1) Property of continental margin basement: the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are the continental crusts or oceanic crusts, and origin of micro-continent within the oceans; (2) the ocean-continent transition and coupling process, revealing from the comparison of the major events between the West Pacific Ocean seamount chains and the continental margins, mantle exhumation and the ocean-continent transition zones, causes of transform fault within back-arc basin, formation and subduction of transform-type continental margin; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two ocean and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3. On the relationship, especially their present relations and evolutionary trends, between the Paleo- or Present-day Pacific plates and the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean. At last, this paper makes a perspective of the related marine geology, ocean-continent connection zone and in-depth geology for the two oceans and one zone.  相似文献   

15.
The Amirante ridge/trough complex developed along the Late Cretaceous transform boundary that separated the Seychelles/India and Madagascar/Somali Basin plates. Motion between these plates was complex, comprising sinistral N-S strike-slip movement coupled and coeval with counter-clockwise rotation induced when seafloor spreading developed in only the southern portion of the transform. The overall morphology of the complex comprises a series of arcuate ridge and trough segments. These segments were successively produced by tectonic and volcanic activity within the zone of migrating plate contact adjacent to the rotational pivot where compression was replaced by extension along the transform boundary. In the extensional regime to the south of this contact zone the Mascarene oceanic basin developed, whilst in the compressional zone further north island arcs developed and the ophiolites of Baluchistan were obducted from the Somali Basin onto the leading edge of the Seychelles/India plate.  相似文献   

16.
The Kiselyovka–Manoma accretionary complex formed at the end of the Early Cretaceous during subduction of the Pacific oceanic plate underneath the Khingan–Okhotsk active continental margin along the east of Eurasia. It is composed of Jurassic–Early Cretaceous oceanic chert, siliceous mudstone, and limestone that include a significant amount of basic volcanic rocks. The known and newly obtained data on the petrogeochemistry of the Jurassic and Early Cretaceous basalt from various parts of the accretionary complex are systemized in the paper. Based on the comprehensive analysis of these data, the possible geodynamic settings of the basalt are considered. The petrogeochemical characteristics provide evidence for the formation of basalt in different parts of the oceanic floor within the spreading ridge, as well as on oceanic islands far from the ridge. The basalts of oceanic islands are mostly preserved in the accretionary complex. The compositional variations of the basalts may be controlled by the different thickness of the oceanic lithosphere on which they formed. This is explained by the varying distances of the lithosphere from the spreading zone.  相似文献   

17.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   

18.
Tonga and Mariana fore-arc peridotites, inferred to representtheir respective sub-arc mantle lithospheres, are compositionallyhighly depleted (low Fe/Mg) and thus physically buoyant relativeto abyssal peridotites representing normal oceanic lithosphere(high Fe/Mg) formed at ocean ridges. The observation that thedepletion of these fore-arc lithospheres is unrelated to, andpre-dates, the inception of present-day western Pacific subductionzones demonstrates the pre-existence of compositional buoyancycontrast at the sites of these subduction zones. These observationsallow us to suggest that lateral compositional buoyancy contrastwithin the oceanic lithosphere creates the favoured and necessarycondition for subduction initiation. Edges of buoyant oceanicplateaux, for example, mark a compositional buoyancy contrastwithin the oceanic lithosphere. These edges under deviatoriccompression (e.g. ridge push) could develop reverse faults withcombined forces in excess of the oceanic lithosphere strength,allowing the dense normal oceanic lithosphere to sink into theasthenosphere beneath the buoyant overriding oceanic plateaux,i.e. the initiation of subduction zones. We term this conceptthe ‘oceanic plateau model’. This model explainsmany other observations and offers testable hypotheses on importantgeodynamic problems on a global scale. These include (1) theorigin of the 43 Ma bend along the Hawaii–Emperor SeamountChain in the Pacific, (2) mechanisms of ophiolite emplacement,(3) continental accretion, etc. Subduction initiation is notunique to oceanic plateaux, but the plateau model well illustratesthe importance of the compositional buoyancy contrast withinthe lithosphere for subduction initiation. Most portions ofpassive continental margins, such as in the Atlantic where largecompositional buoyancy contrast exists, are the loci of futuresubduction zones. KEY WORDS: subduction initiation; compositional buoyancy contrast; oceanic lithosphere; plate tectonics; mantle plumes; hotspots; oceanic plateaux; passive continental margins; continental accretion; mantle peridotites; ophiolites  相似文献   

19.
洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.   相似文献   

20.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号